Automated Performance Modeling for IoT Systems

Connie U. Smith & Amy Spellmann
Performance Analysis for Internet of Things – Topics for Today

- Introduction to IoT performance
- Why it’s important for our focus as performance specialists
- Case Study: IoT Surveillance Camera analysis
- Status: Research & Automation
Internet of Things

- Millions of data streams
- Complex architectures
- Disruptive technologies
- Performance matters!
Poor IoT Performance is Noticeable
Responsiveness has Competitive Edge

Best time-saving appliances and electronics
Consider these top-performing products for your home
Published: January 2015
Why should we as performance analysts care about IoT?

- 60% of Enterprises are implementing in-house IoT systems for highly visible, strategic initiatives.
- Enterprise development teams have little to no experience designing IoT systems.
- You can be the hero by preventing performance problems before deployment.

Save costs, avoid failures & deliver products faster.
App Connects to Device
Must deal with data import, processing, storage, & analysis of hundreds of millions of events or images per hour.

Data storage & analytics, Edge vs. Core processing

Where should encryption be performed?

Sample IoT Real-time Stream Processing Architecture

Case Study: Surveillance Camera Analysis
Case Study Goals

- Evaluate the performance of the IoT design to provide predictive analytics for 2700 surveillance cameras, 1900 (1kb) msgs/sec (equates to 1 Megapixel/sec)
 - Based on an IoT distributed stream processing benchmark with predictive analytics* and open-source AES (Advanced Encryption Standard) software
- Obtain predictive analytics from image data in a timely manner
- Determine the best design to meet requirements for performance & cost

** RIoTBench: A Real-time IoT Benchmark for Distributed Stream Processing Platforms; Anshu Shukla, Shilpa Chaturvedi and Yogesh Simmhan, Department of Computational and Data Sciences, Indian Institute of Science

© L&S Computer Technology, Inc. 2017
IoT Surveillance System Performance Questions

- Where should encryption/decryption be done? Camera vs. on-prem?
- Where should filtering be done? Camera vs. on-prem?
- How many servers are needed to process 1 megapixel/sec? Expected latency?
- What is the performance effect of architecture & design alternatives?
IoT Surveillance Camera System – Basic Camera

How should we architect the system? Will a basic camera work or is a smart camera necessary?

2700 Basic Cameras

Data stream

Images

Encrypt
Filter
Predictive Analytics

Lookup related
Results

© L&S Computer Technology, Inc. 2017
Baseline – Basic Camera Scenario

- **Camera**: Capture
- **AES**: AESencryptimage(megapixels 1028)
- **Filter**: Filter
- **Analytics**: Predictive Analytics
- **Azure Table**: tableInsert, tableLookup, tableLookupResults, tableInsertResults

- **Raw Image (megapixels 1028)**: 9.6 ms
- **AES Encrypt Image (megapixels 1028)**: 0.21 ms
- **Decrypted Results**: 9.6 ms
- **AES Decrypt**: 0.32 ms
- **AES Encrypt Results (megapixels 3000)**: 9.6 ms
- **Table Insert**: 60 ms
- **Table Lookup**: 0.21 ms
- **Table Lookup Results**: 9.6 ms

© L&S Computer Technology, Inc. 2017
Methodology/Results for Basic Camera

- Evaluate processing requirements for 1 megapixel/sec for the Basic Camera or 1900kb/sec

- Total service time without contention is .07 seconds per kb

- 10 Cores per server; add servers until reasonable residence time is achieved (10 core increments)
 - Processing times are derived from the RIoT benchmark & our own AES encryption performance tests

<table>
<thead>
<tr>
<th>Residence Time/kb</th>
<th>Utilization</th>
<th>#CPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2927</td>
<td>100%</td>
<td>50</td>
</tr>
<tr>
<td>0.205</td>
<td>80%</td>
<td>70</td>
</tr>
<tr>
<td>0.159</td>
<td>70%</td>
<td>80</td>
</tr>
</tbody>
</table>
Expensive smart cameras that perform encryption, filtering are powerful but are they worth it? $1000 apiece

2700 Smart Cameras

Encrypt
Filter

Data stream

Images
Lookup related
Results

Predictive Analytics
Methodology/Modeling Results Smart Camera

- Message arrival rate is reduced since the smart camera sends only frames that are already filtered, encrypted
- Processing steps reduced to reflect sequence diagram

<table>
<thead>
<tr>
<th>Residence Time (sec/kb)</th>
<th>Utilization</th>
<th>#CPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.106</td>
<td>56%</td>
<td>20</td>
</tr>
<tr>
<td>0.085</td>
<td>14%</td>
<td>80</td>
</tr>
</tbody>
</table>

© L&S Computer Technology, Inc. 2017
OR Optimize AES algorithms for the Basic Camera

- Refine the AES Algorithm to reduce processing time
 - Potential to achieve a 60% improvement

- Rerun Basic Camera Scenario

<table>
<thead>
<tr>
<th>Residence Time (sec/kb)</th>
<th>Utilization</th>
<th># CPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.107</td>
<td>74%</td>
<td>30</td>
</tr>
<tr>
<td>0.083</td>
<td>44%</td>
<td>50</td>
</tr>
<tr>
<td>0.078</td>
<td>28%</td>
<td>80</td>
</tr>
</tbody>
</table>

With AES Tuning

Original Basic Camera Results
Comparison

- Neither design accomplishes real-time streaming, as the Azure table lookup limits residence time per kb (60ms) - better design would make the Azure table lookup asynchronous.
- For this initial analysis, smart cameras provide the best residence time with 50 CPUs/5 servers but Basic cameras with 5 servers can achieve similar IF the AES algorithm is improved.

Comparison of Scenarios: CPUs & Residence Time

<table>
<thead>
<tr>
<th>Scenario</th>
<th>CPUs</th>
<th>Residence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Camera</td>
<td>80</td>
<td>0.159</td>
</tr>
<tr>
<td>Smart Camera</td>
<td>50</td>
<td>0.087</td>
</tr>
<tr>
<td>Basic Tunded AES</td>
<td>50</td>
<td>0.083</td>
</tr>
</tbody>
</table>

© L&S Computer Technology, Inc. 2017
Don’t run out & spend $2.7M on smart cameras!

There are other options to evaluate from a cost & performance perspective

1. Asynchronous Azure lookup
2. Pipeline architecture
3. Lower resolution
4. Buffering frames
5. Fewer/different cameras
6. Azure vs. on-prem storage
7. In a disaster, there would be much more surveillance data

☐ This analysis is representative of how to apply SPE to IoT
☐ We are illustrating how to do the analysis
☐ Adapt it to your situation

More to come

© L&S Computer Technology, Inc. 2017
Status
Software Performance Engineering (SPE) Goal

- Early, model-based assessment of software decisions to determine performance impact
- Architecture
 - Has the most significant influence on performance
 - Most difficult to change
SPE-ED+ Significance

- IoT Systems Disruptive Technology:
 - New developer challenges: UI design, networks, interface to backend systems
 - Time disparity - UI in seconds, controls in ms.
 - Lean RTOS -> Multiprocessing OS eg. Windows Embedded
 - Security issues

- Performance problems are unexpected, visible and newsworthy

- Lack of performance management tools
Vision: Developers Do Robust Engineering

- We cannot continue to build systems with yesterday's methods
- Automated assessment of software and systems architecture is essential
Automated Modeling for Performance (AMP)

- Models automatically generated from design specs in a variety of formats
- Results that developers can use to explore options quickly and easily
- Model interchange formats enable plug and play model solutions
R&D: SPE·ED -> RTES/Analyzer -> SPE·ED+

- SPE·ED - L&S Product
 - Users are performance experts
 - Solid modeling foundation for new products

- AMP- Automated Models for Performance
 - Target developers as users
 - Real-Time & Embedded System modeling extensions
Status

- RTES/Analyzer architecture and enabling technology are positioned for future development
- SBIR Phase 2 funding x 2
- Completing prototype RTES/Analyzer to demonstrate the viability for developers
- Seeking additional comprehensive case study data
- Seeking partners for Phase 3
Summary

- IoT systems are increasingly being developed by enterprises & technology providers.
- We as performance analysts can facilitate the development of IoT systems that perform the first time.
- We demonstrated how SPE can be applied to an IoT system with modeling in the design stage & how designs can relate to overall system costs.
- Additionally, we can assist developers in preventing performance problems in their new systems.
Questions?

www.spe-ed.com
cusmith@spe-ed.com
amy@spe-ed.com
All the performance solutions you need, in one conference.

Join hundreds of colleagues, peers and industry leaders in New Orleans this fall for the 43rd International Conference!

imPACt 2017 will be an action-packed, three-day conference filled with information and collaboration. Learn from the performance industry’s top experts while connecting with fellow specialists during this valuable event.

Learn More and Register Online at www.CMGimPACt.com