

Challenges of MSU Capping w/o Impacting SLAs

St. Louis CMG

Oct 4th 2016 at

Panera Bread **Donald Zeunert**

BMC Software

Abstract

Numerous IBM capping options to lower MLC costs.

- Difficult to manage and offer SLA risks.
- Free MSU opportunities from some of them.

How can you take advantage of capping and lower the SLA impact risk?

zEnthusiast – Overcome perception mainframe is expensive

Capacity Planners Challenge

Robert De Niro as Simon Silver

Agenda

Capping Objectives

How does 4HRA MLC costs work

Free MSUs - 4HRA sum vs demand MSUs

Pro/Con of capping options

- What are some Risks
- Why did capping fail in the past
 - IBM Improvements to eliminate issues
 - What mechanism are ineffective
 - Which have greatest risks
- How to reduce risks

Capping objectives and options

- Contractual SWLC MSU limit
 - Hard cap, Absolute Cap or Softcap ?
- Lower 4HRA and IBM MLC charges
 - SoftCap
- Control Runaway or unimportant workloads
 - Absolute Cap & Softcap
- Reserve upgrade capacity for later purpose
 - Consistent response, new or growing workload

MLC Reduced & SLAs improved

Goal of Usage (4HRA) based MLC

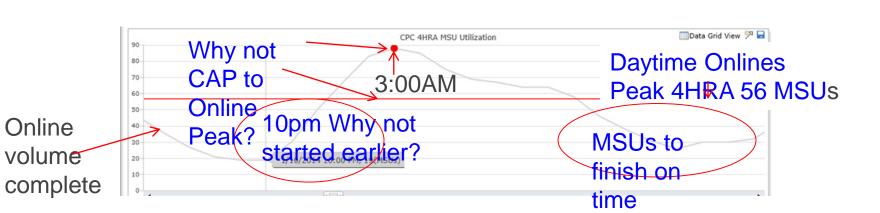
Rolling Average MSU by Physical system MSU/hr Billed at FREE 4hr 250 Rolling average 200 not peak 150 usage 4hrs 4hrs 50 MSUused MSU4hAvg 8:00 AM 5:00 PM .

Rolling Average MSU by Physical system

Buy extra capacity meet SLAs, <u>pay for</u> <u>less than used</u>

"Ideal" workload

- Heavy online with multiple Peaks
- Little or no batch within 4hr of peak
- Batch consumption peak below onlines 4HRA


Q: Is my CPC Ideal?

Typical ISSUEs – 4HRA not when expected

BATCH is source of problem

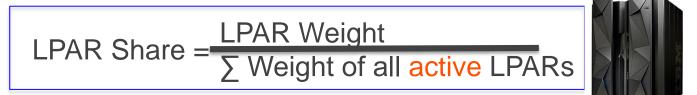
Started too early – averages w/ end of online peak usage Finishes too late - averages w/ start of online peak usage Source of peak MSUs is the 4HRA

- Finishes with hours to spare and is not either above condition
 - Needs to be controlled
- Drops then peaks again barely finishes on time

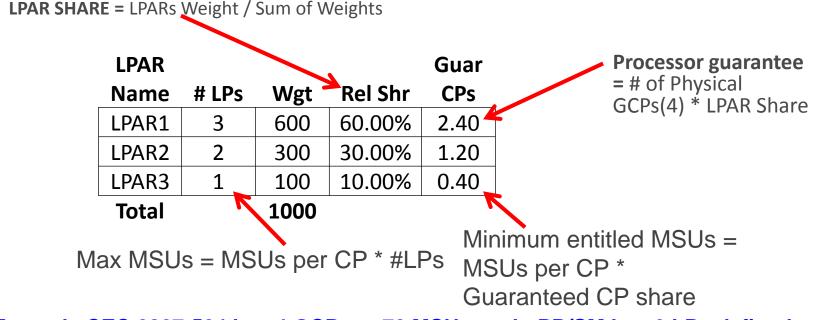
SLA Impact from Capping – WLM

WLM Policy flaws are exposed by resource constraint

– Capping = Resource constraint

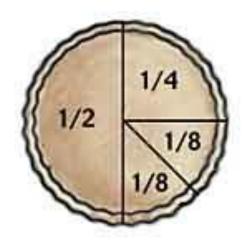

WLM Management –

- Does what you told it to do, not necessarily what you want it to do
- Manages to the average of the many (Service class)
- Relative Importance Do not cause more harm than good


PR/SM LPAR Weights & Hard Cap

Entitlement / SHARE = <u>% of CEC</u> LPAR is <u>guaranteed</u>

- LPAR share NOT a Cap, exceeded if spare MSU
 - Overcommit limited to 100% of the # of LPs
- Initial / Hard Cap limits LPAR to its share
 - Caps even if white space / no 4HRA impact
- CEC 100% = Sum of entitlements
 - Only lack of work in uncapped stops from using 100% of CEC


Calculating LPAR Share & MSUs from Weights

Example CEC 2827-504 has 4 GCPs at 70 MSUs each, PR/SM has 6 LPs defined LPAR 2 Min is 84 MSUs (70 MSUs * 1.20) and Max is 140 MSUs (70*2) which is 66% more than guaranteed

PR/SM Objectives

CEC at 100%

LPAR Fair Share

If Capping is not controlling all LPARs, capping one LPAR doesn't mean it goes to other one. Normal LPAR priorities apply.

Demand MSU Limits

Capping Options	Pros	Cons
PR/SM LPAR Weights	Guarantees minimum share to an LPAR	DOES NOT LIMIT Peak or 4HRA MSU consumption
PR/SM LPAR #LPs	-	DOES NOT LIMIT Peak or 4HRA MSU consumption,
		#LPs usually 2-9x minimum / guaranteed share.
Hiperdispatch		DOES NOT LIMIT Peak or 4HRA MSU consumption
Intelligent Resource	5 <u>5</u>	DOES NOT LIMIT Peak or 4HRA MSU consumption.
Director (IRD)	enables Hiperdispatch	Can be used in conjunction with Soft Caps
WLM Resource	Hard cap, controls consumption which may	DOES NOT LIMIT Peak or 4HRA MSU consumption.
groups	lower 4HRA	May prevent low priority work from causing it
groups	Limits specific WLM Service classes to consume	Doesn't even protect from low importance when
	maximum of certain # of SUs in a Sysplex	Sysplex LPARs on multiple CECs (typical).
PR/SM initial	Hard Cap - Can be used to control 4HRA costs	White Space - wasted when no impact on CEC 4HRA
capping (HardCap)	Min Guaranteed (CEC MSUs * LPAR Weight %)	Can't use with defined or group capacity
	More granular 1/10 of CP than # LPs	MSU limit increases if other LPAR deactivated
PR/SM Absolute	Hard Cap - Can be used to control 4HRA costs.	White Space - wasted when no impact on CEC 4HRA.
Capping	May be used concurrently with defined or	Needs to be set high & used in conjunction w/
capping	group capacity management	Defined or Group Cap
	Granular 100ths of CP hard limits and	Requires EC12 to control how much above 4HRA
	independent of LPAR initial weight	spikes can be

Logical / Physical – Guaranteed Minimum Does not create a maximum other than 100% of # of LPs

CURR WIN >W1 =LPAR Name SYSP VMR VM4 VM5 VM9 DB2A DB2B SYSN SJSE SJSE SJSE SJSE SJSC	Sysplex Name BBPLEX01 BBPLEX01 BBPLEX01	4 =====5 Type CP CP CP CP CP CP CP CP CP CP CP CP CP	LP Ct34222333233333333333	WI = t Wg = 000 555000 555554000 3000 3000 3000 3000	===> Rel Shr 9.0 9.0 9.0 9.0 7.2 7.2 7.2 7.2 5.4 5.4 5.4 4.5	11.8 52.6 94.6 41.9 34.5 17.9 18.7 17.0 208.7 210.5 62.0		໌ຣດ :55==== L	CROLL ===> =MVMVS==== Log Proc B)50	D===1 usy%	Even if some LPARs have hard caps, the other LPARs w/o can consume 100% of CEC
SJSD ESAJ IMSA IOC2 SJSH	BBPLEX01	CP CP CP CP CP	3 3 1 2	250 200 150 50 50	4.5 3.6 2.7 0.9 0.9	87.3 192.7 129.6 10.8 198.5	*	21.0 37.0 18.7 1.6 1.3			g White Space / e than
If no LPARs with work to compete with production batch, can exceed guaranteed share. And therefore easily guaranteed share Impacting 4HRA?											

can exceed guaranteed share. And therefore easily exceed (2x) daytime 4HRA (3 vs 1.5 CPs)

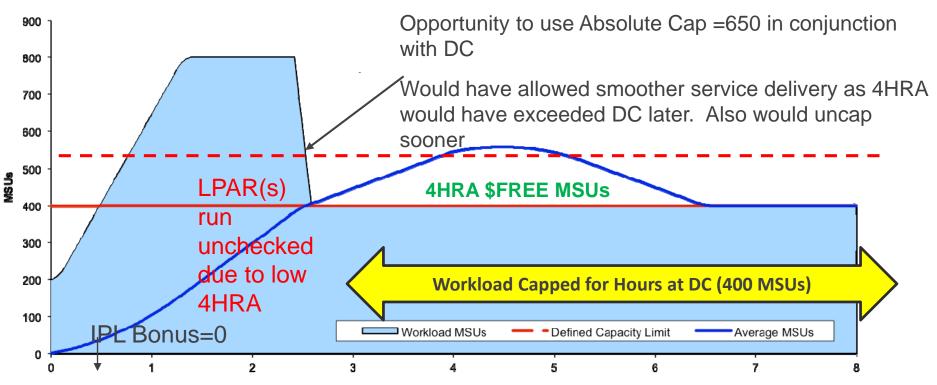
Everyone's share < 10% of 16 CPs so guaranteed < 1.6 CPs

Why hard Capping failed in the past

MODE			NGE REASON=	NONE H	IPERDISPAT	CH=NO	MODE			NGE REASON=NO	ONE	HIPERDISPAT	CH=YES	
	MODEL PU	н43	чт	ME %		LOG PROC	1.000	MODEL PU	H43	TIM	E %		LOG PR	ROC
NUM	TYPE	ONLINE	LPAR BUSY	MVS BUSY	PARKED	SHARE %	NUM	TYPE	ONLINE	LPAR BUSY	MVS BUSY	PARKED	SHARE	%
0	CP	100.00	14.61	54.28		18.0	0	CP	100.00	89.12	97.67	0.00	100.0	HIGH
1	CP	100.00	13.00	46.80		18.0	1	CP	100.00	87.50	97.83	0.00	80.4	MED
2	CP	100.00	10.71	31.82		18.0	2	CP	100.00	2.51	82.33	96.54	0.0	LOW
3	CP	100.00	6.77	18.55		18.0	3	CP	100.00	1.87	63.68	96.54	0.0	LOW
4	CP	100.00	4.22	6.44		18.0	4	CP	100.00	0.01		100.00	0.0	LOW
5	CP	100.00	4.87	13.16		18.0	5	CP	100.00	0.01		100.00	0.0	LOW
6	CP	100.00	1.75	2.72		18.0	6	CP	100.00	0.01		100.00	0.0	LOW
7	CP	100.00	4.54	13.05		18.0	7	CP	100.00	0.01		100.00	0.0	LOW
А	CP	100.00	4.02	10.40		18.0	A	CP	100.00	0.01		100.00	0.0	LOW
в	CP	100.00	3.08	6.88		18.0	в	CP	100.00	0.01		100.00	0.0	LOW
TOTAL	L/AVER	AGE	6.76	20.41		180.0	TOTA	L/AVER	AGE	18.10	96.92		180.4	

No HIPERDISPATCH all the CPs got their % CP cut CPU Intensive single TCB workloads suffered heavily.

Not effective use of processor L1 Cache

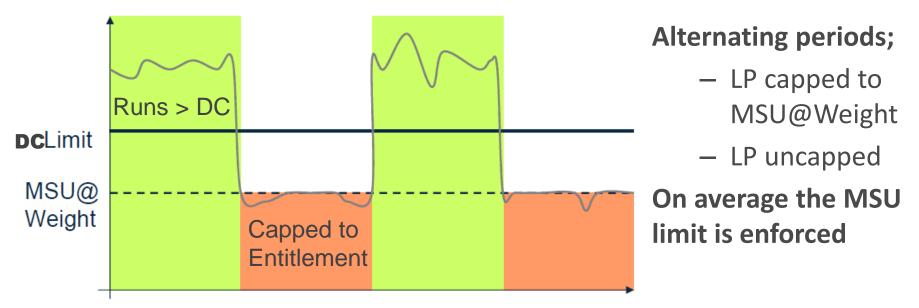

With CPs <u>can</u> run at 100%, CP Intensive workloads not impacted by engine speed

Effective use of processor L1 Cache, may lower CPU secs and (4HRA) billed

4HRA Limits – Soft Capping PR/SM & WLM Based

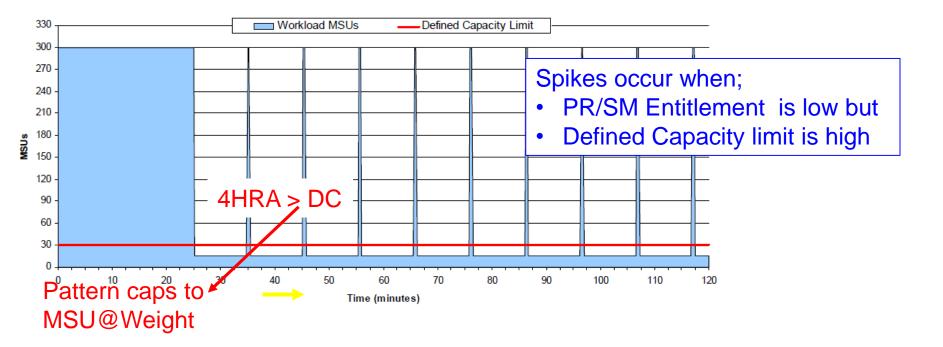
Cap Opts	Pros	Cons
Defined	Allows LPAR to consume MSUs > DC as long as not impact 4HRA.	White Space - wasted when no impact on CEC 4HRA. SLA Risk - Caps LPARs w/o regard to WLM
Canacity	If exceeds, its not billed	importance
	Mgd to 4HRA, billing limited. Granular to 1	SLA Risk - Allows MSU Peaks > 4HRA, out perform.
	MSU	Later has to cap to maintain 4HRA.
	Can be used w/ Absolute Capping	SLA Risk - Doesn't donate unused capacity
LPAR Group	Mgd to 4HRA, billing limited. Granular to 1	SLA Risk - Caps LPARs w/o regard to WLM
	MSU. Shares capacity among LPARs	importance, at capacity uses PR/SM shares
Capacity	Multiple Capacity groups control max MSUs	SLA Risk - Can't share White space that wouldn't
	on subsets of LPARs for VWLC or 3rd party	impact CEC 4HRA or contracts
	MSUs	
	Works w/ Defined Capacity & IRD	SLA Risk - Allows MSU Peaks > 4HRA, out perform.
	(as long as group not capped)	Later has to cap to maintain 4HRA.

More FREE MSUs – Exceeding DC or GCL

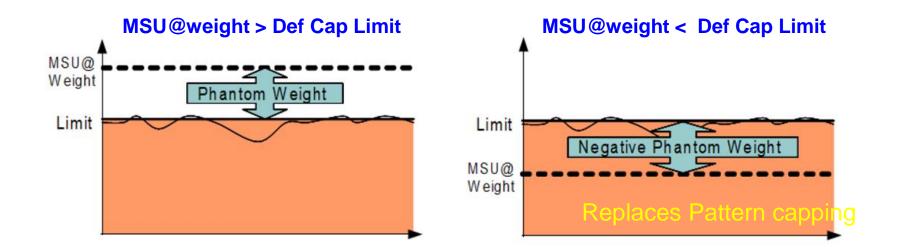


Why Soft Capping failed in the past

Erratic response times from drastic changes to MSUs available

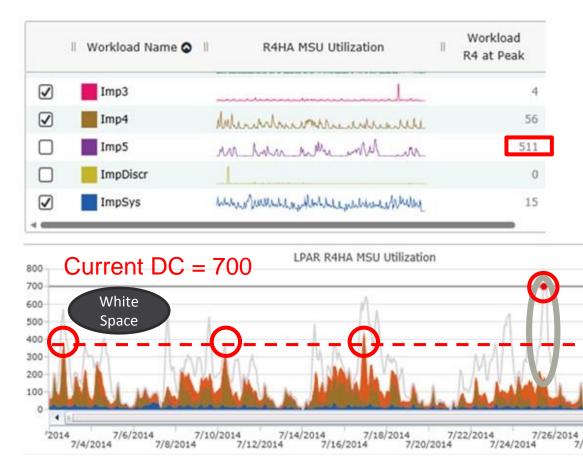

PR/SM Weight (entitlement) vs. Defined Capacity Limit	Hardware / Software level	Selected capping technique
MSU@weight = DCL	Any	Cap at Weight
MSU@weight > DCL	Any	Phantom weight
MSU@weight ≤ DCL	zEC12 GA2 and z/OS V2.1 or later	Negative phantom weight
	Other	Pattern capping

Pattern Capping – DC > LPAR Entitlement



MSU@weight < Cap Limit

Erratic service delivery – Pattern Capping

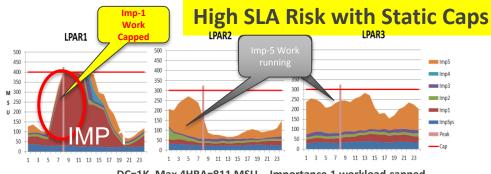


Phantom Weight – Smooth Capping

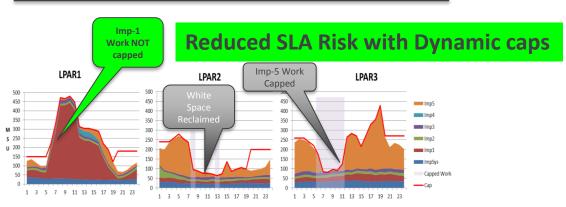
Negative Phantom Weight – New w/ zEC12 with z/OS V2.1

Static Cap Challenge – Workload variability

White space – constrain w/o benefit


Workload mix at CEC peak not typical

IMP 5 and Discretionary drove peak Desired DC = 375 But not as much low imp present other times in month. 3 to 4 days cause issue


Benefit of Dynamic vs Static Capping

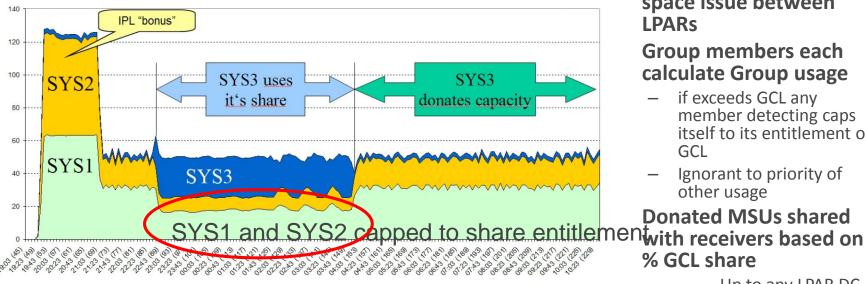
Dynamically Update Capacity

DC=1K, Max 4HRA=811 MSU - Importance 1 workload capped

MSULIMIT=650 - Saving of 161 MSU - No high importance workload capped

Exploit "white space"

Group capping eliminates static DC issue?


Single GCL - can solve whitespace issues

- Creates SLA and MLC Charges risks (PR/SM Shares)
- IRD What if Multiple Sysplex / Monoplex on CEC ?

Multiple Capacity groups

- White Space issue same as multiple LPARs w/ Static DCs
- Why were they needed MLC control or SW contract limits?
 - Did you want to steal or give extra?

Capacity Groups – White Space usage

Eliminates the White space issue between **LPARs**

Group members each calculate Group usage

- if exceeds GCL any member detecting caps itself to its entitlement of GCL
- Ignorant to priority of other usage

Donated MSUs shared % GCL share

Up to any LPAR DC

LPARs do not have to be in same Sysplex

Group Capping – Extreme example

Group MSU Limit 1000 MSUs CEC Capacity 500 MSUS Group Cap

Group PR/SM Entitlement %

1/4

1/8

1/8

Was 500

Now 250

Considerations

What was LPARs

- 4HRA Peak?
- Month Peak?
- Original PR/SM Entitled MSUs?
 How much low importance was there?
 How important is the workload?

Ratios

Uses PR/SM Weight

• All LPARs lose equal %

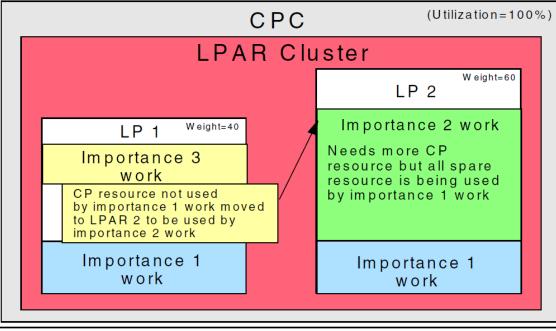
Weights to ensure % of

Need to adjust PR/SM

GCL is adequate

Use Intelligent Resource Director (IRD) ?

LPAR cluster - grouping of LPARs on a CEC and in the same Sysplex

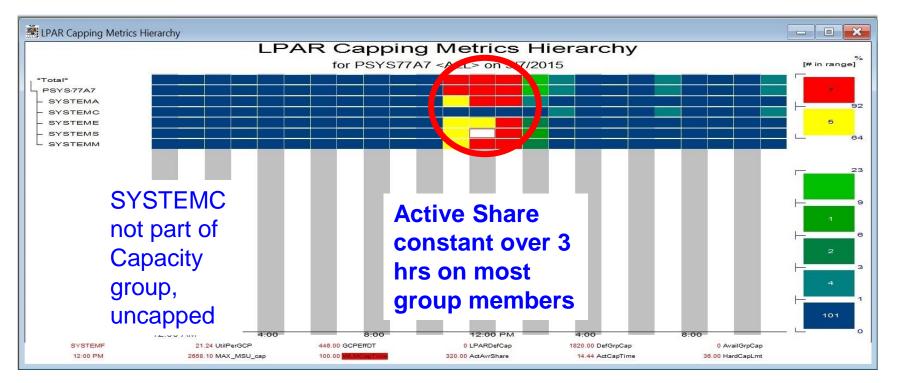

- Multiple LPAR clusters can exist on CEC for multiple Sysplexes
- Monoplexes must be defined as unique Sysplexes
- White Space issues between IRD LPAR clusters

IRD Manages within an LPAR Cluster

- CPU Management for LPARs
 - LPAR weight management within a cluster w/ optional Min/Max per LPAR
 - VARY CPU Management (fixed short CP syndrome, HiperDispatch preferred)
- I/O Performance
 - Dynamic Channel Path Management
 - Channel Subsystem Priority Queuing.

IRD – Reallocation within an LPAR Cluster

Addresses workload routing imbalances within a Sysplex



IRD Dynamically adjusts weights steals same % as it reallocates How many LPARs in 1 Plex do you have on a CPC? How many Plexes do you have on a CPC?

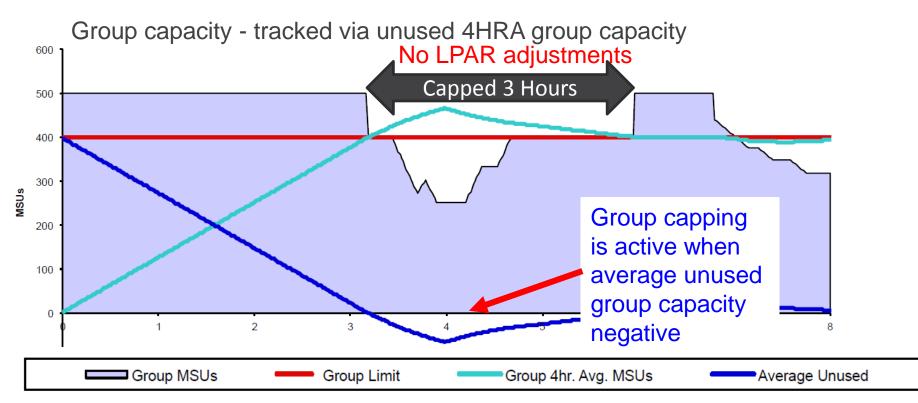
© 2001 IBM Corporation

Redbook - z/OS Intelligent Resource Director SG24-5952-00 (2001)

All Members capped > 92% of the time

Group Cap – w/ IRD Risks –

4HRA > GCL – NO IRD Weight Management

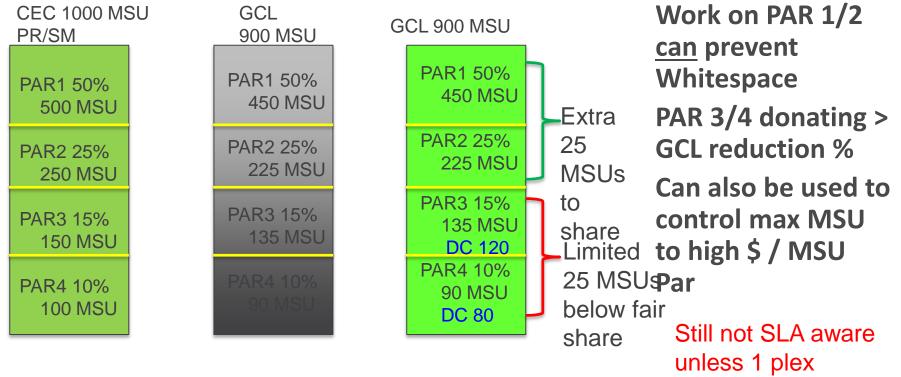

- Pre- zOS 2.1 <u>frozen</u> at last setting until 4HRA drops below GCL
- Post zOS 2.1 option to restore to original, <u>frozen</u> until 4HRA drops below GCL

IRD relies on WLM Consistency of LPARs in the LPAR Cluster

Could be ok as same Sysplex WLM policy

Group Capping -

Group Caps Issues - not necessarily cost cap


One Large group (typical) – Steal MSUs from cheap (zNALC) and give to expensive (IMS LPAR).

- MSUs capped to max, but cost varies depending on who gets MSUs

Multiple groups – Separate ones for Prod, Test, zNALC

- May provide better cost controls if LPARs in groups have similar \$/ delta MSU
- But now back to White Space issues

Using DCs with GCLs

Capping is safer than before and there is lots of MLC \$ to be saved

- IBM hard cap and soft cap have both been improved to provide smoother capping
- Static Defined capacities (DCs) are difficult to set low enough Group capacities (GCLs) have issues, but better than static DCs Ideally we need mechanism to dynamically adjust DCs / GCLs
 - Some customers automate DC changes on schedules
 - Several vendors offer solutions based on different criteria to dynamically modify DCs and GCLs

Thank You

Bring IT to Life.[™]

Contact: Donald_Zeunert@bmc.com