The Relatively New LSPR
and
The IBM z13 and z13s Performance Brief

CMG 2016
La Jolla, CA

Gary King
IBM

November 7, 2016
Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply. All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions. This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area. All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

© Copyright IBM Corporation 2016
Topics

- What's "Relatively New" in the LSPR
 - and the theory and analysis behind it
- Performance drivers with z13
- z13 ITR Ratios
- Workload Variability
- Performance drivers with the z13s
- z13s ITR Ratios
LSPR: Performance Showcase for z Processors

- IBM System z provides capacity comparisons among processors based on a variety of measured workloads which are published in the Large System Performance Reference (LSPR)
- Old and new processors are measured in the same environment with the same workloads at high utilizations
- Over time, workloads and environment are updated to stay current with customer profiles
 - old processors measured with new workloads/environment may have different average capacity ratios compared to when they were originally measured
- LSPR presents capacity ratios among processors
- Single number metrics MIPS, MSUs, and SRM Constants
 - based on the ratios for
 - the "average" workload
 - the "median" customer LPAR configuration
LSPR RNI-based Workload Categories
Validated and now zPCR default

- Historically, LSPR workload capacity curves (primitives and mixes) had application names or been identified by a "software" captured characteristic
 - for example, CICS, IMS, OLTP-T, CB-L, LoI0-mix, TI-mix, etc
- However, capacity performance is more closely associated with how a workload is using and interacting with a processor "hardware" design
- With the availability of CPU MF (SMF 113) data starting with z10, the ability to gain insight into the interaction of workload and hardware exists.
- The LPSR for z196 introduced three new workload categories which replaced all prior primitives and mixes.
 - LOW, AVERAGE, HIGH Relative Nest Intensity
 - originally treated as a workload "hint" in zPCR
- Migrations to z196 and zEC12 have validated this approach
 - detailed study of 16 customers and 75 LPARs for each of the migration scenarios of z10 to z196 and z196 to zEC12
- RNI-based methodology for workload matching is now the default in zPCR
Fundamental Components of Workload Capacity Performance
Part 1

- Instruction Path Length for a transaction or job
 - Application dependent, of course
 - Can also be sensitive to Nway (due to MP effects such as locking, work queue searches, etc)
 - But generally doesn't change much on moves between processors of similar capacity and/or Nway

- Instruction Complexity (Micro processor design)
 - Many design alternatives
 - Cycle time (GHz), instruction architecture, pipeline, superscalar, Out-Of-Order, branch prediction and more
 - Workload effect
 - May be different with each processor design
 - But once established for a workload on a processor, does not change very much
Fundamental Components of Workload Capacity Performance
Part 2

- Memory Hierarchy or "nest"
 - Many design alternatives
 - cache (levels, size, private, shared, latency, MESI protocol), controller, data buses
 - Workload effect
 - Quite variable
 - Sensitive to many factors: locality of reference, dispatch rate, IO rate, competition with other applications and/or LPARs, and more

- Relative Nest Intensity
 - Activity beyond the private cache(s) is the most sensitive area
 - due to larger latencies involved
 - Reflects activity distribution and latency to chip-level caches, book-level caches and memory
 - Level 1 cache miss percentage also important
 - Data for calculation available from CPU MF (SMF 113) starting with z10
z196 versus z10 hardware comparison

- **z10 EC**
 - CPU
 - 4.4 GHz
 - Caches
 - L1 private 64k i, 128k d
 - L1.5 private 3 MB
 - L2 shared 48 MB / book
 - book interconnect: star

- **z196**
 - CPU
 - 5.2 GHz
 - Out-Of-Order execution
 - Caches
 - L1 private 64k i, 128k d
 - L2 private 1.5 MB
 - L3 shared 24 MB / chip
 - L4 shared 192 MB / book
 - book interconnect: star
The Most Influential Factor
Underlying Workload Capacity Curves is
Relative Nest Intensity (RNI)

- Many factors influence a workload's capacity curve
- However, what they are actually affecting is the workload's RNI
- It is the net effect of the interaction of all these factors that determines the capacity curve
- The chart below indicates the trend of the effect of each factor but is not absolute
 - for example, some batch will have high RNI while some transactional workloads will have low
 - for example, some low IO rate workloads will have high RNI, while some high IO rates will have low

<table>
<thead>
<tr>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch</td>
<td>Transactional</td>
</tr>
<tr>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Single</td>
<td>Many</td>
</tr>
<tr>
<td>Intensive</td>
<td>Light</td>
</tr>
<tr>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>High locality</td>
<td>Diverse</td>
</tr>
<tr>
<td>Simple</td>
<td>Complex</td>
</tr>
<tr>
<td>Extensive</td>
<td>Limited</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Type</td>
<td></td>
</tr>
<tr>
<td>IO Rate</td>
<td></td>
</tr>
<tr>
<td>Application Mix</td>
<td></td>
</tr>
<tr>
<td>CPU Usage</td>
<td></td>
</tr>
<tr>
<td>Dispatch Rate</td>
<td></td>
</tr>
<tr>
<td>Data Reference Pattern</td>
<td></td>
</tr>
<tr>
<td>LPAR Configuration</td>
<td></td>
</tr>
<tr>
<td>Software Configuration Tuning</td>
<td></td>
</tr>
</tbody>
</table>
LSPR Workload Categories

- Categories developed to match the profile of data gathered on customer systems
 - over 100 data points (LPARs) used in the profiling
- Various combinations of prior workload primitives are measured on which the new workload categories are based
 - Applications include CICS, DB2, IMS, OSAM, VSAM, WebSphere, COBOL, utilities

- **LOW** (relative nest intensity)
 - Workload curve representing light use of the memory hierarchy
 - Similar to past high Nway scaling workload primitives

- **AVERAGE** (relative nest intensity)
 - Workload curve expected to represent the majority of customer workloads
 - Similar to the past LoI0-mix curve

- **HIGH** (relative nest intensity)
 - Workload curve representing heavy use of the memory hierarchy
 - Similar to the past DI-mix curve

- zPCR extends these published categories
 - Low-Avg
 - 50% LOW and 50% AVERAGE
 - Avg-High
 - 50% AVERAGE and 50% HIGH
CPU MF

- What is CPU MF?
 - A z10 GA2 and later facility that provides memory hierarchy COUNTERS
 - Also capable of time-in-Csect type SAMPLES
 - Data gathering controlled through z/OS HIS (HW Instrumentation Services)
 - Collected on an LPAR basis
 - Written to SMF 113 records
 - Minimal overhead

- How can the COUNTERS be used today?
 - To supplement current performance data from SMF, RMF, DB2, CICS, etc.
 - To help understand why performance may have changed

- How can the COUNTERS be used for future processor planning?
 - They provide the basis for the LSPR workload categories
 - zPCR can automatically processes CPU MF data to provide a workload match based on RNI

- Reference John Burg's CPU MF presentation at SHARE
 - March 3, 11:15-12:15
z196 versus z10 hardware comparison

- **z10 EC**
 - CPU
 - 4.4 GHz
 - Caches
 - L1 private 64k i, 128k d
 - L1.5 private 3 MB
 - L2 shared 48 MB / book
 - book interconnect: star

- **z196**
 - CPU
 - 5.2 GHz
 - Out-Of-Order execution
 - Caches
 - L1 private 64k i, 128k d
 - L2 private 1.5 MB
 - L3 shared 24 MB / chip
 - L4 shared 192 MB / book
 - book interconnect: star
Volunteer Customers Total CPI vs RNI

Low | Average | High

CPU MF
z10 Customer Workload Characterization Summary
RNI-based LSPR Workload Decision Table

<table>
<thead>
<tr>
<th>L1MP</th>
<th>RNI</th>
<th>LSPR Workload Match</th>
</tr>
</thead>
<tbody>
<tr>
<td><3</td>
<td>>= 0.75</td>
<td>AVERAGE</td>
</tr>
<tr>
<td></td>
<td>< 0.75</td>
<td>LOW</td>
</tr>
<tr>
<td>3 to 6</td>
<td>>1.0</td>
<td>HIGH</td>
</tr>
<tr>
<td></td>
<td>0.6 to 1.0</td>
<td>AVERAGE</td>
</tr>
<tr>
<td></td>
<td>< 0.6</td>
<td>LOW</td>
</tr>
<tr>
<td>>6</td>
<td>>=0.75</td>
<td>HIGH</td>
</tr>
<tr>
<td></td>
<td>< 0.75</td>
<td>AVERAGE</td>
</tr>
</tbody>
</table>

Notes: Applies to all processors z10 and later
Table may change based on feedback
Performance Drivers with z13

- **Hardware**
 - memory subsystem
 - continued focus on keeping data "closer" to the processor unit
 - larger L1, L2, L3, L4 caches
 - improved IPC (Instructions Per Cycle) aka reduced CPI (Cycles Per Instruction)
 - 3x configurable memory
 - processor
 - 2x instruction pipe width, re-optimized pipe depth for power/performance
 - improved IPC aka reduced CPI
 - SMT for zIIPs and IFLs
 - includes metering for capacity, utilization and adjusted chargeback (zIIPs)
 - SIMD unit for analytics
 - up to 8 processor units per chip
 - up to 141 configurable processor units
 - 4 different uni speeds

- **HiperDispatch**
 - exploits new chip configuration
 - required for SMT on zIIPs

- **PR/SM**
 - 85 customer partitions (up from 60)
 - memory affinity
 - keep LPAR's CPs and memory local to drawer as much as possible
z13 versus zEC12 hardware comparison

zEC12
- CPU
 - 5.5 GHz
 - Enhanced Out-Of-Order
- Caches
 - L1 private 64k i, 96k d
 - L2 private 1 MB i + 1 MB d
 - L3 shared 48 MB / chip
 - L4 shared 384 MB / book

z13
- CPU
 - 5.0 GHz
 - Major pipeline enhancements
- Caches
 - L1 private 96k i, 128k d
 - L2 private 2 MB i + 2 MB d
 - L3 shared 64 MB / chip
 - L4 shared 480 MB / node
 - plus 224 MB NIC
z13 Capacity Performance Highlights

- Full speed capacity models ... capacity ratio to zEC12
 - average 1.10x at equal Nway
 - average 1.40x max capacity (141w z13 versus 101w zEC12)

- Subcapacity models
 - Uniprocessor capacity ratio to full speed z13
 - 0.15x (target 250 MIPS)
 - 0.44x
 - 0.63x
 - up to 30 CPs (general purpose processors) for each subcap model

- SMT capacity option
 - IFL's and zIIPs can optionally choose to run 2 HW threads per processor engine or "core"
 - opt-in or opt-out at the LPAR level
 - added HW threads appear as additional logical processors to z/VM and z/OS
 - may see wide range in capacity improvement per core over single thread: +10% to +40%

- Variability amongst workloads
 - workloads moving to z13 can expect to see more variability than last migration
 - performance driven by improved IPC in core and nest
 - workloads will not react the same to the improvements in these areas
 - micro benchmarks are particularly susceptible to this effect
SMT Overview

- SMT allows for the enablement of a second hardware thread per processor engine or "core"
 - Appears as another logical processor to z/VM and z/OS
 - LPARs may opt-in or opt-out to SMT on IFLs or zIIPs

- Capacity gain per core will vary
 - Dependent on the overlap and interference between the two threads
 - overlap
 - many core resources are replicated so each thread can make progress
 - while one thread waits for a cache miss, the other thread can continue to run
 - interference
 - some serialization points within the core
 - threads share the same caches, thus cache misses can increase
 - Benchmarks observe +10% to +40% capacity increase versus single HW thread per core
 - no clear predictor of where a workload will fall

- With SMT, individual tasks (SW threads) run slower but dispatcher delays reduce
 - For example, a 1.3x capacity gain is spread over 2 HW threads which means each thread runs at 1.3/2 = .65x a single thread or about the speed of a z196 core
 - But with twice as many HW threads (logical processors) to dispatch to, dispatching delays (CPU queuing) can be reduced

- Metering available through RMF and z/VM Performance Reports
 - Thread density, utilization, capacity factors
What's new in the LSPR for z13 and z13s

- Workload updates
 - upleveled software - z/OS 2.1, subsystems, compilers
 - minor tweaks to three hardware-characteristic-based workload categories
 - based on CPU MF data from customers' z196 to zEC12 migrations

- HiperDispatch continues to be turned on for all measurements
 - important even on smaller Nway processors starting with z196 and above due to sensitivity to
 L3 chip-level cache

- LSPR will publish only single HW thread capacity in the multi-image table
 - multi-image (MI) table
 - median LPAR configuration for each model based on customer profile
 - including effect of average number of ICFs and IFLs
 - most representative for vast majority of customers
 - basis for single-number metrics MIPS, MSUs, SRM constants

- zPCR allows any configuration to be modelled
 - customized LPAR configurations and workloads (as always)
 - SMT capacity effect will be included via a user controlled "dial"
 - set dial to reflect the estimated capacity increase of 2 threads over 1 thread
 - pre-install guidance in setting dial to be provided based on internal testing and eventual
 field experience (Defaults to 20% for IFLs, 25% for zIIPs)
 - post-install guidance in setting dial from metering data available in RMF and z/VM
 Performance Reports
Median LPAR Configuration Profiles for the Multi-image Table

- Total number of z/OS images
 - 5 images at low-end models to 9 images at high-end
- Number of major images (>20% weight each)
 - 2 images across full range of models
- Size of images
 - low- to mid-range models have at least one image close to Nway of model
 - high-end models generally have largest image well below Nway of model
 - these models tend to be used for consolidation
- Logical to physical CP ratio
 - low-end near 5-1
 - most of the range 2-1
 - high-end near 1.3-1
- Book configuration
 - 1 "extra" book beyond what is needed to contain CPs
- ICFs/IFLs
 - 3 ICFs/IFLs
Using the LSPR z/OS V2R1 Tables

- For the most accurate capacity sizing...
 - use zPCR customized LPAR configuration planning function
 - should always be used for final configuration planning for any upgrade
- LSPR tables may be used for high level capacity comparisons
 - Multi-image table represents average LPAR configuration and is the basis for all single-number metrics
- Tables at the LSPR website and those in zPCR will have slight differences
 - Precision
 - LSPR rounded to two digits to right of decimal point
 - zPCR carries maximum significant digits internally (displayed result is rounded to show 5 significant digits for the largest processor)
 - Reference (base) processor
 - LSPR fixed at 2094-701
 - zPCR chosen by you (the user)
LSPR website z/OS V2R1 Tables

z13 versus zEC12

Multi Image Table

<table>
<thead>
<tr>
<th>z/OS V2R1 AVERAGE</th>
<th>z/OS V2R1 AVERAGE</th>
<th>z/OS V2R1 AVERAGE</th>
<th>z/OS V2R1 AVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>zEC12 ITR</td>
<td>z13 ITR</td>
<td>z13:zEC12 ratio</td>
<td>z13 PCI</td>
</tr>
<tr>
<td>701</td>
<td>2.70</td>
<td>3.03</td>
<td>1.12</td>
</tr>
<tr>
<td>708</td>
<td>17.98</td>
<td>19.99</td>
<td>1.11</td>
</tr>
<tr>
<td>716</td>
<td>31.98</td>
<td>35.13</td>
<td>1.10</td>
</tr>
<tr>
<td>732</td>
<td>55.85</td>
<td>61.55</td>
<td>1.10</td>
</tr>
<tr>
<td>764</td>
<td>98.70</td>
<td>108.44</td>
<td>1.10</td>
</tr>
<tr>
<td>7A1</td>
<td>140.10</td>
<td>154.99</td>
<td>1.11</td>
</tr>
<tr>
<td>z13 7E1 vs zEC12 7A1</td>
<td>140.10</td>
<td>199.28</td>
<td>1.42</td>
</tr>
</tbody>
</table>

z13 includes 3 subcapacity offerings

Subcapacity Offerings vs Full Speed

<table>
<thead>
<tr>
<th>z13</th>
<th>z/OS V2R1 MI AVG ITRR</th>
<th>Ratio to 701</th>
<th>PCI</th>
<th>Max #CPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>701</td>
<td>3.03</td>
<td>1.00</td>
<td>1695</td>
<td>141</td>
</tr>
<tr>
<td>601</td>
<td>1.91</td>
<td>.63</td>
<td>1068</td>
<td>30</td>
</tr>
<tr>
<td>501</td>
<td>1.33</td>
<td>.44</td>
<td>746</td>
<td>30</td>
</tr>
<tr>
<td>401</td>
<td>.45</td>
<td>.15</td>
<td>250</td>
<td>30</td>
</tr>
</tbody>
</table>

Notes: Uni speeds range from 15% to 63% of full speed uni
Each subcapacity offering has a maximum of 30 CPs
Workload Variability with z13

- Performance variability is generally related to fast clock speed and physics
 - increasing memory hierarchy latencies relative to micro-processor speed
 - increasing sensitivity to frequency of "missing" each level of processor cache
 - workload characteristics are determining factor, not application type

- z13 performance comes from improved IPC (instructions per cycle) in both the micro-processor and the memory subsystem (clock speed is 10% slower but tasks run on average 10% or more faster)
 - magnitude of improvement in IPC will vary by workload
 - workloads moving into a z13 will likely see more variation than last migration

- Examples of workload variation for moves to new technology starting with the z9 appear on the next few slides
LSPR Single Image Capacity Ratios
10way: z10 EC versus z9 EC
Example of Workload Variability

LSPR Workload

LOW RNI	AVERAGE RNI	HIGH RNI
1.60 | 1.51 | 1.42

CB-L individual job capacity ratios

Capacity Ratio
LSPR Single Image Capacity Ratios
10way: z196 versus z10 EC
Example of Workload Variability

LSPR Workload

- LOW RNI: 1.32
- AVERAGE RNI: 1.38
- HIGH RNI: 1.44
LSPR Single Image Capacity Ratios
16way: zEC12 versus z196
Example of Workload Variability

LSPR Workload

- LOW RNI: 1.27
- AVERAGE RNI: 1.24
- HIGH RNI: 1.22
LSPR Single Image Capacity Ratios
16way: z13 versus zEC12
Example of Workload Variability

LSPR Workload

CB-L individual job capacity ratios

Capacity Ratio

LOW RNI AVERAGE RNI HIGH RNI

1.14 1.10 1.06

© Copyright IBM Corporation 2016
Performance Drivers with z13s

- **Hardware**
 - memory subsystem
 - continued focus on keeping data "closer" to the processor unit
 - larger L1, L2, L3, L4 caches (>=2x larger)
 - improved IPC (Instructions Per Cycle)
 - 8x configurable memory (up to 4 TBs total)
 - processor
 - 2x instruction pipe width, re-optimized pipe depth for power/performance
 - improved IPC
 - SMT for zIIPs and IFLs
 - includes metering for capacity, utilization and adjusted chargeback (zIIPs)
 - SIMD unit for analytics
 - up to 7 processor units per chip
 - up to 20 configurable processor units
 - 26 different uni speeds

- **HiperDispatch**
 - exploits new chip configuration
 - required for SMT on zIIPs

- **PR/SM**
 - 40 customer partitions (up from 30)
 - memory affinity
 - keep LPAR's CPs and memory local to drawer as much as possible
 - usually z13s will stay in 1st drawer as 1st 2 TBs of memory is placed in the 1st drawer
z13s versus zBC12 hardware comparison

- **zBC12**
 - CPU
 - 4.2 GHz
 - Enhanced Out-Of-Order
 - Caches
 - L1 private 64k i, 96k d
 - L2 private 1 MB i + 1 MB d
 - L3 shared 24 MB / chip
 - L4 shared 192 MB / book

- **z13s**
 - CPU
 - 4.3 GHz
 - Major pipeline enhancements
 - Caches
 - L1 private 96k i, 128k d
 - L2 private 2 MB i + 2 MB d
 - L3 shared 64 MB / chip
 - L4 shared 480 MB / node
 - plus 224 MB NIC
z13s Capacity Performance Highlights

- Full speed capacity models ... capacity ratio to zBC12
 - improved Nway scaling (much larger L3 and L4)
 - 1.3x to 1.5x for equal Nway based on workload and Nway
 - >1.4x max capacity for CPs (6w z13 MR versus 6w zBC12)
 - >2x max capacity for IFLs (20w z13 MR versus 13w zBC12)

- 156 capacity settings provide wide range of capacity
 - uni speeds approximately 6% to 91% of full speed
 - A01: 80 MIPS
 - Z01: 1430 MIPS
 - Z06: 7123 MIPS

- SMT capacity option
 - IFL’s and zIIPs can optionally choose to run 2 HW threads per processor engine or "core"
 - opt-in or opt-out at the LPAR level
 - added HW threads appear as additional logical processors to z/VM and z/OS
 - may see wide range in capacity improvement per core over single thread:
 +10% to +40%
LSPR z/OS V2R1 Tables
z13s versus zBC12

Examples from the Multi Image Table

<table>
<thead>
<tr>
<th></th>
<th>z/OS V2R1 AVERAGE</th>
<th>z/OS V2R1 AVERAGE</th>
<th>z/OS V2R1 AVERAGE</th>
<th>z/OS V2R1 AVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>zBC12 ITR</td>
<td>z13s ITR</td>
<td>z13s:zBC12 ratio</td>
<td>z13s PCI</td>
</tr>
<tr>
<td>Z01</td>
<td>1.90</td>
<td>2.55</td>
<td>1.34</td>
<td>1430</td>
</tr>
<tr>
<td>Z06</td>
<td>8.86</td>
<td>12.72</td>
<td>1.44</td>
<td>7123</td>
</tr>
</tbody>
</table>
z13s includes 25 subcapacity offerings

Example Uni-processor Offerings vs Full Speed

<table>
<thead>
<tr>
<th>z13s</th>
<th>z/OS V2R1 MI AVG</th>
<th>Ratio to Z01</th>
<th>PCI</th>
<th>Max #CPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z01</td>
<td>2.55</td>
<td>1.00</td>
<td>1430</td>
<td>6</td>
</tr>
<tr>
<td>A01</td>
<td>0.14</td>
<td>.06</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>G01</td>
<td>0.31</td>
<td>.12</td>
<td>172</td>
<td>6</td>
</tr>
<tr>
<td>T01</td>
<td>1.33</td>
<td>.52</td>
<td>746</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes: Uni speeds range from 6% to 91% of full speed uni
Summary

- "Relatively New" RNI-based LSPR
 - Validated and is the default in zPCR

- z13 traditional performance
 - approximately 10% more capacity per engine than zEC12
 - max config provides approximately 40% more capacity vs zEC12

- z13 new performance opportunities
 - 3x memory
 - SMT for IFLs and zIIPs add another 10% to 40% per engine capacity
 - SIMD for analytics

- z13s
 - 26 capacity models with uni speeds ranging from 80 to 1430 MIPS
 - up to 6 general purpose processors, up to 20 total configurable processors
 - 8x memory, SMT for IFLs and zIIPs, SIMD for analytics

- Workload variability will be higher than past few generations