
©2012 IBM Corporation©2012 IBM Corporation

Bob Rogers

rrrogers@us.ibm.com

St. Louis CMG Local Users Group
July, 2016

The What and Why of

System z Millicode

©2012 IBM Corporation

What is Millicode?
 Answer: Millicode is a form of microcode

 So what is microcode?
o To paraphrase Wikipedia: Microcode is a layer of

hardware-level instructions involved in the
implementation of higher level machine code
instructions.

o A microarchitecture is the actual architecture of a
machine which executes internal microcode which
in turn implements the external architecture of the
machine as seen by software.

o Microcode is used not only to implement the
instruction set architecture but also other controls
like interrupt processing.

2

The invention of microcode is attributed to M.V.Wilkes, Proc. Cambridge Phil. Soc., pt. 2, vol. 49, April 1953, pp. 230-238.

The term architecture was first applied to a computer instruction set by Gene Amdahl.

©2012 IBM Corporation

What’s good about Microcode?

 Originally developed as a simpler method of
developing the control logic for a computer.

 Machines with differing internal design and
built on different hardware technologies can
present a single architecture to software.

 Logic errors in the microcode can be fixed with
a reload of the microcode without actual
hardware changes.

 Microcode patches can even be used to work
around errors in the hardware.

3

©2012 IBM Corporation

An Example: System/360 Model 30

 Most models of the IBM System/360 line were
microcoded machines.

 This allowed the System/360 architecture to be
provided on machines across wide ranges of
price and performance based on the underlying
technology and engineering.

 The Model 30 was the low-end model.
o Implemented the 32-bit S/360 architecture on a

much simpler machine:
 An 8-bit machine with 8-bit data paths

 GPRs were actually in core memory

 The microcode itself was in a Read-only Store (ROS)

©2012 IBM Corporation

Forms of microcode: Horizontal

 Horizontal microcode
o A type of code in which the instructions are composed of a

sequence of bit fields that more or less directly control the
data flow within the CPU.

o Horizontal microcode instructions are very literal and do not
need much decoding.

o A single micro-instruction might perform more than one
operation in a single cycle.

 As a simple example, one instruction might
• Gate the value in a register to the left half of an adder

• Gate the value in another register to the right half of the adder

• Cause a 2s-compliment addition in the adder

• Shift the result by 4 bits

• Gate the result to some other register

 VLIW (very long instruction word) architectures are somewhat
similar to a horizontal micro-architecture

©2012 IBM Corporation

Forms of microcode: Vertical

 Vertical microcode

o A type of code with instructions very similar to the
types of instructions that programmers are familiar
with.

o Basically, a vertical micro-architecture is just the
architecture of a simpler machine than the one
presented to programmers.

o On the simpler machine, the hardware and
microcode implement the more complex
architecture which is presented to programmers.

o Each micro-instruction typically does only a single
operation in a cycle.

©2012 IBM Corporation

An Example: S/390 9672 G3

 The early CMOS S/390 processors used vertical
microcode. It was very similar to familiar machine
language instructions, but the architecture is much
simpler than the target architecture (i.e. S/390).

 Most of the frequently used simple instructions were
implemented directly in hardware.

 More complex functions were implemented in vertical
microcode that ran on distinct microcode processors
which acted somewhat like a coprocessor.

 The microcode programs were stored in a special
memory. If there was more microcode than fit into the
special memory then the microcode for some
instructions had to be "paged in" from regular memory
before execution.

©2012 IBM Corporation

Forms of microcode: Millicode

 Millicode on the IBM mainframe is a vertical
microcode with some differences

 IBM System z micro-architecture instruction set is a
superset of a subset of the instruction set of the external
architecture described in Principles of Operation.
o Millicode runs on the same hardware processor as customer

software.

o Architected instructions that are implemented in hardware
are also available to millicode programs.

o The millicode architecture includes additional instructions
and registers not available in the external architecture.

o Instructions which are implemented in millicode, of course,
are not available to millicode programs

©2012 IBM Corporation

An Example: S/390 9672 G4

 Starting with 9672 G4, the processors used a vertical
code which is very similar to the target architecture
(S/390, z/Architecture).

 It is so similar that it is executed on the same processor
as the target architecture. There is no need for a special
microprocessor.

 The programs are stored in standard memory (but not
accessible to programs) and accessed via the L1
instruction cache, just like normal programs. There is
no special instruction store1.

 Because of these similarities to normal code, this type
of code was named Millicode.

1Actually, the G4 had a read only millicode cache to hold some performance sensitive routines. The

rest of the millicode was handled as described.

©2012 IBM Corporation

Millicode Implementation

 Since millicode executes on the same processor as
zArchitecture instructions, that processor must be
augmented with additional state information and be
capable of executing additional instruction types.
o there is a "millicode mode" - millimode

o millicode status: milli-GPRs, milli-ARs, milli-CRs, millicode
instruction address register plus other millicode registers

o there are instructions to move data between the architected
register and the millicode registers.

o other special instructions only available in millimode

o cannot use instruction implemented in millicode

o when millicode is entered, specific millicode registers are
loaded before the millicode is given control.

©2012 IBM Corporation

Uses of System z Millicode

 On modern systems, most of z/Architecture is
implemented in hardware.

 Millicode augments the hardware to provide:
o System configuration functions

o System initialization functions

o Virtualization support for logical partitioning

o Complex instructions

o I/O functions

o Interrupts and other control functions

o RAS, Recovery, Logouts

o Instrumentation

©2012 IBM Corporation

Reasons for Millicoded Instructions

 Very complex instructions can be implemented
with reasonable engineering expense.

o Conversely, the ability to implement in millicode
allows the architecture the freedom to define very
complex instructions.

 Compatibility across processor generations can
be provided by an early implementation in
millicode.

 Millicode has access to hardware facilities not
available to normal code.

©2012 IBM Corporation

More Reasons for Millicoded Instructions

 Millicoded instructions are non-interruptible1.

o Can perform multiple storage updates without
requiring explicit disablement

 Millicode runs with high authorization.

o This allows well-defined operations to be
performed without needing to invoke the operating
system (e.g. via SVC).

 A millicoded instruction can provide common
functions almost like subroutines.

1Actually, some millicoded instructions are interruptible, but under strict millicode control

©2012 IBM Corporation

Very Complex Millicoded Instructions

 Using millicode allows engineers to provide
complex functions without complex logic
design.
o Many of the most complex z/Architecture

instruction include over 100 cycles of activity

o Examples:
 Program Call (PC), Branch and Stack (BAKR), Program

Transfer (PT)

 Load Address Space Parameters (LASP)

 Perform Locked Operation (PLO)

 Cipher Message (KM)

 I/O Instructions (SSCH, TSCH, HSCH, TPI), etc.

©2012 IBM Corporation

Compatibility through Millicode Implementation

 Instructions and processor facilities can be
provided earlier by providing an initial
implementation in millicode.

 This enables greater compatibility and
provides a test environment for functions later
implemented in hardware.

 Examples:

o Compare Double and Swap (64) on z900

o Long Displacement Facility on z900

o Decimal Floating Point on z990

©2012 IBM Corporation

Millicoded Instructions as Subroutines

 Some millicoded instruction are implemented to
provide a common function.
o MVCL and CLCL are examples of functions that can be done

in normal code in a dozen lines of code or so (more if
padding).

o Others include Translate (TR), Translate and Test (TRT).

o In many cases, implementing these functions in normal code
actually takes less cycles than using the millicoded
instructions.

o However, in some cases, there is special hardware to make
these common functions execute more efficiently.

o Using these “machine-provided subroutines” can reduce code
bloat and improve programmer productivity.

©2012 IBM Corporation

Millicoded Instructions for non-interruptibility

 Millicode can efficiently implement functions that must execute
without interruption.
o Millicode, by it’s nature, is not interruptible.

o Using a millicoded instruction is faster than disabling for interrupts
in normal code, performing the function and then re-enabling.

o Disabling for interrupts is not available to unauthorized application
code. Unauthorized code must depend upon an operating system
service to perform the function.

o An example is Extract CPU Time (ECTR). It “atomically” extracts the
CPU Timer value, subtracts it for one operand and adds a second
operand to the result.

 An interruption during these calculations leads to incorrect results because
the operating system updates the fields which are the operands whenever an
interrupt occurs.

 Before this instruction was introduced, an operating system service was
needed to do this calculation of “CPU time used”.

o The Perform Locked Operation (PLO) is an obvious example of taking
advantage of the non-interruptibility of millicode.

©2012 IBM Corporation

Millicoded Instructions for Authority

 Millicode can perform operations that require
levels of authority

o Millicode is self-enforcing as far as authorization is
concerned – it does whatever it wants to do.

o Millicode can use its authority to perform well-
defined operation for unauthorized programs.

o Using a millicoded instruction is faster than using
an SVC or PC routine that has the appropriate
authority.

o Examples are the stacking instructions and Extract
CPU Time.

©2012 IBM Corporation

Millicode for access to special hardware

 In some cases, millicode has access to hardware
facilities not available to normal code.

 For example, the MVCL instruction can use a hardware
“data mover” when moving a full 4K frame of data (i.e.
4K bytes on a 4K boundary).

 The “data mover” can move data out in the memory
nest without bringing it into processor cache. The data
can be moved as a number of blocks that can be moved
in parallel.

 As another example, the Edit (ED) and Edit and Mark
(EDMK) instructions are supported by special
hardware not available in the external architecture.

©2012 IBM Corporation

Performance of Millicoded Instructions

 Millicode runs in the same way and at the same speed
as ordinary software

 Therefore, it’s often possible to implement a function in
normal code which runs faster than using a millicoded
instruction to do that function.

 When there is a choice of using a millicoded instruction
or writing the function in open code, trade-offs need to
be considered.
o Convenience and programmer productivity

o Code footprint size

o Whether non-interruptibility is required

o Whether the millicode has access to special hardware (e.g.
some cases of MVCL and CLCL, data compression,
encryption)

©2012 IBM Corporation

Why Millicode is a Great Idea

 Millicode uses the same processor hardware as
ordinary software.

 This avoids additional cost to design and
manufacture a separate processor to run
millicode as is often the case with traditional
vertical microcode.
o Millicode performance benefits from all the

optimizations of the main processing engine.

o Millicode RAS benefits from all the RAS
mechanisms of the main processing engine.

o Very low latency in switching into and out of
millicode execution.

©2012 IBM Corporation

How Millicode differs from Program Code

 To get its work done,
o Millicode needs additional hardware registers:

 Millicode GPRs, ARs, millicode instruction address register

 Special registers: Operand Access Control Registers (OACRs)

o Special instructions:

 To copy values between the architected registers and the
millicode registers

 Instructions to access special hardware

o Millicode needs to be able to access data

 in memory in the current partition using application
addressability

 in system memory that in not in any partition.

©2012 IBM Corporation

Millicode GPRs and ARs

 Millicode has its own 16 GPRs and 16 ARs.
 Operands in program registers need to be transferred

to millicode registers and results returned to program
registers.

 Some operand registers are specified in the instruction
text and some are implicit.

 There are special millicode instructions to extract or set
program registers.
o Extract Program GR, Set Program GR
o Extract Program GR Indirect, Set Program GR Indirect
o Extract Program AR, Set Program AR
o Extract Program AR Indirect, Set Program AR Indirect

 To assist with transferring the data, four 4-bit register
indirect tags are defined, with each pointing to the GR
specified as an (implicit or explicit) operand by the
instruction.

©2012 IBM Corporation

Millicode Startup

 Even for instructions implemented in millicode, the
hardware performs some setup before branching to the
millicode routine.

 For example, here is the setup for Compare Until
Substring Equal (CUSE):
o Machine Check if Millicode Mode

o Specification Exception if R1 or R2 are Odd GRs

o IAREGA7.0:31 set to Instruction Text

o RI0 set to R1 GR number

o RI1 set to R2 GR number

o RI2 set to R1+1 GR number

o RI3 set to R2+1 GR number

©2012 IBM Corporation

Millicode Memory Access

 When a GPR is used as a base register, the register number is
significant in determining the location of the data.
o Registers 1-7: the storage access is made using the same addressing

mode that is currently indicated by the system program.

o Registers 12-15: the corresponding address is treated as a hardware
system area address.

o Register of 8-11: special hardware designates the address mode used
for the storage access.

o Four OACRs correspond one-to-one to millicode base registers 8-11.
These registers include:

 storage access key

 address-space control (primary, secondary, home, or access register)

 addressing mode (24-bit, 31-bit, or 64-bit addressing)

 addressing type (real, virtual, host real, absolute, hw system area)

 special controls which can block program event recording (PER)
storage alteration detection or protection exceptions, and can
pretest for store-type access exceptions.

©2012 IBM Corporation

Perform Translator Operation (PXLO)

 Load Address Space Control Element - Determines the ASCE used for a
translation

 Load Absolute Address - Obtains an Absolute Address of a translation
 Load Real Address - Obtains the Real Address of a translation
 Load Host Real Address - Used while in emulation mode to obtain the

Host Real Address, when translating a Host Virtual Address
 Load Page Table Entry - Obtains the Page Table Entry address for a

translation
 Load Host Page Table Entry - Used while in emulation mode to obtain

the address of the Host Page Table Entry, when translating a Host Virtual
Address

 Purge TLB - Purges previous translations from the local TLB
 Invalidate Page Table Entry - Invalidates selected entries from the local

TLB
 Purge Data Cache - Purges all entries from the Data Cache
 Purge Instruction Cache - Purges all entries from the Instruction Cache

Adapted from Millicode in an IBM zSeries processor, IBM Journal of Research and

Development, Volume 48 Issue 3-4, May 2004

©2012 IBM Corporation

A Footnote to History

 The floppy disk was invented specifically as a
way of loading microcode.

 In about 1971 IBM started using floppy disks as
a medium for loading microcode into their
System/370 computers during µIPL prior to
system IPL.

 These were 8 inch floppy disks.

©2012 IBM Corporation

Bibliography

 Millicode in an IBM zSeries processor, IBM
Journal of Research and Development, Volume
48 Issue 3-4, May 2004

 Even More of What You Do When You're a
CPU? SHARE 105 (Boston) session 2835 by Bob
Rogers

 Coding Assembler for Performance, SHARE
107 (Baltimore) session 8192 by David Bond

