HOW FAST CAN YOU GO -
OPTIMIZING MEMORY CACHE
PERFORMANCE

CLAIRE CATES
DISTINGUISHED DEVELOPER
CLAIRE.CATES@SAS.COM

/

AGENDA

- Terms
- Performance Problems

- Tools I've used

MEMORY TERMS

Latency

Bandwidth

- The delay to access the memory.
- Usually measured in clock cycles to return the

requested data.

- The slower the latency, the slower your program runs.

- The pipeline carrying the memory from main memory

to the processor.

- If you saturate the pipeline, performance will be

Impacted

- Used by the CPU to reduce the memory
latency

MEMORY CACHE

- A section of Memory closer to the CPU
- Stores frequently used memory

- Design assumptions for the cache.
- Data that is accessed once will more than likely be

accessed again
- When memory is accessed, memory near that
location will be accessed.

. Instruction Cache — used for executable instructions

- Data cache — used to speed up data fetch and store
« L1 (Level 1) — closest cache to the CPU — fastest — smaller

MEMORY CACHE - L2 (level 2) —if data is not in the L2 cache — slower than L1
but faster than main memory, larger than L2.

- L1-L2 ... caches may be shared on multi-core systems

- Many systems now have an L3 cache

Dal Core Processor with
Shared L2 cachea

= =
Core O Core 1

{ \
i L1 Cache L1 Cache |

o [
N _Z

TS L2 Cache f

Memory

YHE
POWER
1O KMOW,

> lscpu

Architecture: x86 b4

CPU op—-mode (=) : 32-bit, &64-bit
Byte Order: Little Endian
CPUO(=):

On-line CPU(=) list:

Thread(=s) per core:

Core(s) per socket:

CPU =socket(=):

GenuineIntel
3
44
Stepping: 2
CPU MH=: 3055.050
BogoMIPS: 6l117.78
Virtualization: VI-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 206K
L3 cache: 12288K
NUMA noded CPU(=) : 0,2,4,6,8,10,12,14
NUMA nodel CPU(=) : 1,3,5,7,59,11,13,15

MEMORY
CACHE
TERMS

Cache Line

Cache Hit

Cache Miss

Data is copied from main memory in a fixed size
area. Typically 64 bytes long. Cache lines will be
copied from main memory to satisfy the data
request. Multiple cache lines may be copied.

The data is found in the cache

The data is not found in the cache. The CPU will need
to load it from a higher level cache or main memory.
You want to avoid Cache Misses.

MEMORY
CACHE
TERMS

Dirty Cache
Line

Write-back
policy

Cache
Coherence

When data is written to memory it needs to eventually
be written back to main memory. It is dirty, if the
contents have not been written back.

The policy the CPU uses to determine when to write
the dirty cache lines back to main memory.

Multiple CPU caches have a private copy of the same
piece of memory.

The process of making sure each of these copies have
the updated “correct” content.

DIRTY CACHE LINE AND CACHE COHERENCY

Main Memory

Dirty cache lines

RSN

updated cache line

L2 Cache

Cache lines for other CPUs
_that must be updated

MEMORY
CACHE
TERMS

Evicted

Replacement
Policy

As the cache becomes full and more cache lines are
loaded, an existing cache line will need to be evicted.

The policy the CPU uses to determine which cache line
to evict. LRU is the most commonly used policy.

MEMORY
CACHE
TERMS

Memory is allocated in pages

A fixed size (page size) block of memory that is mapped
to areas of physical memory. Page Size is often 4K

Page Table The page table contains the translation from the virtual
address to the physical address for the pages.

MEMORY
CACHE
TERMS

Translation
Lookaside Buffer
(TLB)

Prefetching

Applications access memory virtually

Used to speed up Virtual to Physical address
translation.

TLB contains the recent mapping from the page table.

The CPU guesses at what memory will be needed next
and loads it.

Guess right can save latency
Guess wrong, can cost bandwidth and cache line evictions.

MEMORY CACHE
PERFORMANCE
ISSUES

Performance problems occur when there are a lot of
cache misses.

Best to look at the ratio of cache misses to cache hits.

Accessing memory that is in the lower level caches is
the best

Accessing memory sequentially is the best —
prefetching

Full Random is the worst — prefetching is loading bad
data and TLB misses.

Cache misses may also cause further delay if the
bandwidth become saturated.

MEMORY CACHE
PERFORMANCE

ISSUES Performance Implications of a Cache Miss

L1 Cache L2 Cache L3 Cache Main
memory

Sequentlal 4 clk 11 clk 14 clk

In-Page 4 clk 11 clk 18 clk 22ns
Random

Full Random 4 clk 11 clk 38 clk 65.8 ns

Sandy Bridge Latencies for accessing memory. Clk stands for
clock cycles and ns stands for nanoseconds.

HOW MUCH CAN From the SandyBridge numbers.

LATENCY REALLY « Assume 3GHz processor executes 3 instructions per cycle
AFFECT THE » Going to the L1 cache the processor stalls for 4 clk or the CPU could
SYSTEM? have executed 12 instructions.
« If the memory is in the L2 cache the CPU could have executed 44
instructions.

« Sequentially accessing main memory would result in stalling the CPU
for 6*9 (54) instructions.

« Randomly accessing main memory could result in stalling the CPU for
almost 600 instructions.

- Executed

100 /

80 /

60 /

40 //

20

0 e/ . . . :

In L1 L2 Main Main
Registers memory memory
sequential page fault

Instructions That Could Have Been /

Cache Problems

Remember those Design assumptions for the cache

- Data that is accessed once will more than likely be accessed again
- When memory is accessed, memory near that location will be accessed.

DATA LAYOUT CACHE PROBLEM (FETCH UTILIZATION)

Good Utilization all memory in the cache is used

B

L]

L]

B

Poor utilization, only half of the memory in the cache is used.
The other memory takes up cache space and also needs to be
moved thru the pipeline.

- In your structures,

- Put data that is used often together
- So that the used data is all in the cache and rarely used data is
not loaded into the cache

FETCH
UTILIZATION - If needed break up your into multiple structures. This is

especially important if the structures are in an array.

struct Good { struct Bad {
int used; int used;
int used2; int used?2;
} int not_used,;
struct Good2 { int not_used?;
int not_used,; }

int not_used2;

- Put data that is written together

FETCH - Data that changes may affect other cache lines — reduce the
UTILIZATION number of writebacks — especially in data that is shared across
threads.

- Make sure data items are sized correctly.

- If you only need a short, don’t use an int or long. The extra bytes
are wasted.

- Using small memory allocations can be very wasteful
- Causes a random pattern
- Often times memory allocators allocate more than the real size for
headers,....

- Account for the alignment of the data items.
Keep data items in a structure that have similar sizes near each

other
Struct Bad { Struct Better {
FETCH int a; int a;
UTILIZATION char b; int c;
int c; char b;
} }

1 byte aligned
2 bytes 2 byte aligned
Int /long 4 bytes 4 byte aligned

Float 4 bytes 4 byte aligned
Double (Windows) 8 bytes 8 byte aligned
Double (Linux) 8 bytes 4 byte aligned
Long double 8-12 hytes 4 — 8 byte aligned

Data Access Problems

Once the data iIs in the cache, use the
cache line as much as possible before it is
evicted!

DATA ACCESS -
NON-TEMPORAL
DATA

for(i=0; i<num_cols;i++)
for(j=0; j< num_rows; j++)
do something with the array element

. Accessing in Row order would use all the memory in

the cache. Accessing in column order runs out of
cache before the memory can be reused.

. Access the memory sequentially for prefetch gains.
. Non-Temporal access pattern can occur if you are

just trying to analyze too much memory at once even
if it is not in a loop. Break it up into smaller chunks
and combine at the end if possible.

POWER

DATA ACCESS -
NON-TEMPORAL
DATA

for(i=0; i<10;i++)
for(j=0; j< bigsize; j++)
mem[j] += cnt[j] + arr[i];

- If bigsize is large enough, the code will execute and

load each cache line into memory but the cache line
will be evicted before the next iteration.

for(i=0; i<bigsize;i++)
for(j=0; j< 10; j++)
mem[i] += cnt[i] + arr[j];

- This will keep the cache line in memory for the full

duration of the loop of 10 where it is used.

DATA ACCESS -
NON-TEMPORAL
DATA

BREAK THE DATA
BEING
PROCESSED UP
INTO SMALLER
BLOCKS

double M1[cnt][cnt], M2[cnt][cnt], alpha;
for (i=0;i<cnt; i++)
for (j = 0;] < cnt; j++)
M1[i][] += M2([j][i] * alpha;

for (il = 0; ii < cnt; ii += 8)
for (jj = 0; jj < cnt; jj += 8)
for (i=ii; i <ii + 8; i++)
for =J;)<lii+8;]t++)
M1[i][j] += M2[j][i] * alpha;

- When 2 or more threads share a common memory
area and any data is written, cache problems can
occur.

CACHE - When one thread writes to the area the cache for the
COHERENCY AND)) i
COMMUNICATION other thread(s) will be invalidated. |
UTILIZATION - Care should be taken to reduce the number of writes

into shared memory.

L3 Cache

" Dirty cache lines
updated cathe line

L2 Cache

Cache lines for other CPUs

- 2 or more threads are using data in the same cache
line.

- 1 thread writes to the cache line and it invalidates the
data in the other thread(s) cache line

- Often seen when allocating arrays of data based on
the number of threads and shared by the threads

thread 4 counter

thread 3 counter

thread 2 counter

thread 1 counter

» Avoid false sharing by placing data that can change,
close together. Reading data does not destroy the
cache.

« Align memory on a cache line boundary. (pad
structures if necessary)

gsas e

RANDOM MEMORY
ACCESS

Caches work best when memory that is near an
already loaded cache line is accessed.

Memory allocations produce random access to
memory.

Random access patterns can cause TLB misses
which can be costly

Linked list, hashes, tree traversals can also
produce a random access memory pattern.

- Amplifier — with general exploration will tell you some
information about the performance. Several of the
counters deal with the cache. The tool will point you to
the code and assembler code that is causing the
problems.

- ThreadSpotter —It is solely looking at memory usage
and will show you the areas in your program where the
cache is not utilized thoroughly, where sharing
between threads is hurting the case, false sharing and
loop order issues. Gives source code and a good
description of the issues involved.

- | use both tools to get a better idea of where we are
spending performance cycles.

| @ ThreadSpotter: sas (12M/64) qp

ThreadSpotter™

ThreadSpotter™ is a tool to quickly analyze an application for a range of performance
problems, particularly related to multicore optimization.

Bead more.. Manual

| Open the Report |

.\\
P
P

-—*‘

Bead more...

Your application

Application: /sasgen/dev/mva-v240ml/SA5/laxnd/sas iceland -verify_paths -set SASROOT
/sasgen/dev/mva-v940m1/5A5/laxnd -widebug noimgunload -set tkopt noext_unload opt
-notkmmemfill -notkmosfill -memsize 0 -config /sasgen/dev/mva-v840m1/5A5/laxnd/sasvD.cfg
-config /sasgen/devimva-v940m1/SAS/laxnd/nls/en/sasv9.cfg -helphost d77358.na.sas.com

Memory Bandwidth

The memory bus transports data between the main memory and the
processor. The capacity of the memory bus is limited. Abuse of this
resource limits application scalability.

Manual: Bandwidth

Memory Latency

The regulanty of the application's memory accesses affects the
efficiency of the hardware prefetcher. Irregular accesses causes cache
misses, which forces the processor to wait a lot for data to artive.
Manual: Cache misses Manual: Prefetching

Data Locality

Failure to pay attention to data locality has several negative effects.
Caches will be filled with unused data, and the memory bandwidth wil]
waste transporting unused data.

Manual: Locality

Thread Communication / Interaction

Several threads contending over ownership of data in their respective
caches causes the different processor cores to stall
Manual: Multithreading

This means that your application shows opportunities to:
Tune cache utilization to avoid processor stalls.

o

SOFTWARE

Next Steps

The prepared report is divided into
sections,

® Select the tab Summary to see
global statistics for the entire
application.

® Select the tabs Bandwidth
Issues, Latency Issues and
MT Issues to browse through
the detected problems.

® Select the tab Loops to
browse through statistics and
detected problems loop by
loop.

The Issue and Source windows
contain details and annotated source
code for the detected problems.

Summary

Source
Issue

Value details

Resources
Manual

Table of Contents Overview

Optimization Concepts
Workflow

Beading the Issue Beference

b

http://sww.sas.com/saspedia/File:ThreadSpotter_Dash_Board.png
http://sww.sas.com/saspedia/File:ThreadSpotter_Dash_Board.png

L | v Ey fir | # nttp://localhost:57091/session/main.html MBS A
[Most visited v MllRed Hat Ml CustomerPortal MlDocumentation MBlRed Hat Netwaork
| @ Threadspotter. sas (12M/64) | 4k v
: 942 i j, model-s=colMames(j], mudel-:-nunpmc\ez
Issues Loops summary Files Execution 043 fix-=arr[fic->len] i = i;
944 fie-=arr[fiz-=len] .j = 1;
AhuuUHnlp 045 fix-=arr[fix->len] .x = clb[j];
944 filx-=lam+;
Bandwidth Issues Latency Issues 2 e
0ag is0GFixed1[]] = 1;
Multi-Threading Issues Pollution Issues 1 2:‘3 , !
; Issue type % of _ Required o 4
| Filter: All % | | fetches = cache size o3z 4
2 053
32 gl NT | [Non-temporal dats 7.3% 24M g54 if((isFull == SOR FALSE) & (bind = rumBina ries))f
33 | g NT Non-temporal data 5.1% 24M 955 colSublenl = colSublen[bind];
- Q53 colSubIndl = col5ubInd + colSubBeg[bind];
34 & NT Non-temporal data 5.0% 24M 057 Forlb = 8; b < umBinades; bislf
29 | @l NT Non-temporal data 4 7% 20M " Jusae ﬂs_o% j = binIndexTelrig[h];
28 |l NT Non-temporal data 3.8% 20M & B & N
30 |gd NT Non-temporal data 3.1% 20M 95 ifi{j = fix-=arrlil.i)
1 6o tinue;
31 2@ Nt | INon-temnoral data 2 70 2AM 4 comEE
— @E.l% colSublenk = colSublen[b];
] (PR =)P
Issue #32: Non-temporal data
; col5SubIndK = colSubInd + colSubBeg[b];
@ |952 +[7.3% |
4 NT —
& B & N
63 if(!CUT_Cliquel=Ortho(colSubIndK, colSubIndl,
+/ Statistics for the reuses of the A 062 colSubndK + colSublenk,
non-temporal data | |o6s colSubIndl + colSublenl))f
06 if{cub[j] = MIP_EPSILON){
0567 iF(! i s0GFLodi [§]
+| Last instructions to touch the data 068 #FLTH_DBG_PRINTF (LTK_DBGHM("FIX (smat) j: %d -=
before it is evicted 69 i j, model-=collames[j], model-=numP
a7 fie-=arr[fix-=len] .1 = j;
+| First instructions to touch the data P Fhcsarrifixlenl. 3 = 0; L
972 fix-=arr[fix-=len] .x = cubljl; =
after it is evicted 072 R 3
a7 n_fimed+;
+/ Instruction group statistics ars isCGFixed0 4] = 1;
075 1
+| Instructions in instruction group ~] °77 }
078 1
) . i 070
Placeholder. Click on an issue, loop or file om } ;

http://sww.sas.com/saspedia/File:T_issue.png
http://sww.sas.com/saspedia/File:T_issue.png

@ 8.10. Mon-Temporal Data - Mozilla Firefox E'@

- & [i http://localhost:42992/doc/manual_html/r v] [-‘]v Q]
[ia.lﬂ. Mon-Tempaoral Data | op v
8.10. Non-Temporal Data =

A non-temporal data issue is reported when ThreadSpotter™ finds]
places where accessed cache lines are nearly always evicted from the
cache before being reused. However, the cache lines still occupy
space in the cache, that could otherwise be put to better use. See
Section 5.3, “Non-Temporal Data” for more information about
non-temporal data.

Using non-temporal prefetches on the the non-temporal data can
prevent the data from being cached in this cache level. This does not
hurt performance since the data would have been evicted from the
cache before being reused anyway, but may improve performance by
leaving more cache space for other data that can be successfully
cached, and for data of other threads and processes that are sharing
the cache. See Section 5.3.5.1, “Non-Temporal Prefetches” for more
information.

This issue type is normally only included when analyzing the highest
cache level, that is, the cache level closest to memory, since
non-temporal prefetches affect this cache level in most processors.

Issue #12: Non-temporal data & NT_ |

—| Statistics for the reuses of the non-temporal data

% fo fetches |G.5%
Fetch ratio 100. 0%
Fetches 8.08e+05

=| Last instructions to touch the data before it is evicted

% of non-temporal Required cache
reuses size

Stack Instruction

http://sww.sas.com/saspedia/File:Tspot_help.png
http://sww.sas.com/saspedia/File:Tspot_help.png

Ll

ﬁ <hno current project’ - Intel WTune Amplifier EI|

Fle Vew Hesk
Bk Bl b=

Welkome | 002ge | m03ge [¥]

B General Exploration General Exploration viewpoint (change) (@ Intel VTune Amplifier XE 20

L. Targsi " Ane Type &% Botlom-up | | #% Top-down Tee = and Fames

Instructions Retied: 54.000.000

Filled Pipeline Slots
(=) seErrorinHeaderCalculation
=) =ErrorinHeaderCalculation
Unfilled Pipeline Slots (Stalls)
=) Back-end Bound: 0.872
Memory Latency
LLC Load Mieses Sewviced By Remaole DRAM: 1.000

A signficant amouni of lime & speni servicing memory rquesis fom emole DRAM. Whermverpossblke. iry io consislenily use dala on the s=ame cor. oral kasl the =
was allbcaled on.

LLC Miss: 0.000
LLC Hi: 0.000
DTLE Cwerhead: 0.204

A signficant poponion of cycles i being gpent handling first-evel data TLE mieses. As with odinary data caching. focuz on improving data kecaliy and educing working
DTLE overhead. Addiicnally, consider using profikguided optimization (PGO) 1o collbcale frequenily-used dala on the same page. Try using Bmerpage sizesforlamge

Conlesied Accesses: 0.000
Data Sharng: 0.000

Memory Reissues

(=) Frontend Bound: ©0.128

Cache Missas: 0.019
A signficant poporion of instruclion feiches ar miesing in the instruction cache. Use profileguided optimization 1o educe 1he size of hotl code egions. Considercompiler opik
funciions so 1hal hoi Funclions ae bealed fogeiher. IF yourapplication makes signfican use of macms. iry fo mduce this by eitherconverding the mlevan macms o funciions ¢

ITLE Cwerhead: 0.000
DSB Swilches: 0.000

| | e T | [L D [5 | U ¥ SN (U S

Ll

ﬂ <hno current project’ - Intel WTune Amplifier E@

Fle Vew Hesk |
Bk Bl b=

Welkome | 002ge | m03ge [¥]

4l

@& General Exploration General Exploration viewpoint (change)

B Summary #% Topdown Tree | | BB Tasksand Fam

Gmuping: Funclion / Call Siack e | La
Hardwame ...|Hadwamre ... Filed Ppaline Skis -
- CP| Retirng
Function / Call Stack CPU_C.. [INST_RE..| Baie Ba. TRE——
THREAD ANY Aesicis | P e
LLC Load Mi..| LLC M= LLC Hi |DTLE Overhe...|Contested Ac..| Daa s
P [Duiside any known module] 74,000,000 34,000,000 2.176 o.000 (DD 2
P 1kl micAdd 4,000,000 0 0000 0.000 -
b eks_gel_byles 2,000,000 0 0000 0.000
P funci@ox47ez 2,000,000 0 0000 0.000
P10 wfprinif 2,000,000 0 0000 0.000
P_dl catch_emor 2,000,000 0 0000 0.000
P fork 2,000,000 0 0000 0.000
P _ini_mallc 2,000,000 0 0000 0.000
P inlel_memss 2,000,000 0 0000 0.000
P sldLockGe 2,000,000 0 0,000 0,000
Sekcled 1 mw(s) | 74.000.000 34000000 2176 0.000 0000 1,000 0.000 0.000 0.270 0.000 R4
1 o | | 3]
|
Tt 0.5s 15 1.55 2= 258 3s 358 45 Thread
=amkkem (0x7c8) ® WP [+] E2J Running
The SAS Syslem V || | | Sk Hadwamr Eve...
= e = Hardware Events
B |ekbsw Dx7cl) I |
£ [Gine Mod x7ee)|: | | ; dluy Hardware Eve...
Session [DxFca) | | .
The Chid Serer |7 |]
TSRV (0x7ch) |] ﬂ
FWEMTTSK n+«7~7Th - _
Hadwamre Evenls
< |

n [Y [P o] L | m” N N . T - m Ao Th o —

SUMMARY

- Cache’s were designed with the assumption that

- once memory is loaded it will likely be accessed again.
- Memory that is accessed is likely close to other memory
that will be used.

- Memory caches have improved performance but if a

developer doesn’t understand the principals of the
cache and doesn’t design with caches in mind, their
application will suffer performance problems.

- Remember each time the CPU has to go back to main

memory, the CPU will be stalled and not performing
useful work.

- Not all issues that may be discovered will be fixable.

QUESTIONS

CLAIRE.CATES@SAS.COM

