
Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

HOW FAST CAN YOU GO –

OPTIMIZING MEMORY CACHE

PERFORMANCE

CLAIRE CATES

DISTINGUISHED DEVELOPER

CLAIRE.CATES@SAS.COM

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

AGENDA

• Terms

• Performance Problems

• Tools I’ve used

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

MEMORY TERMS

• The delay to access the memory.

• Usually measured in clock cycles to return the

requested data.

• The slower the latency, the slower your program runs.

Latency

Bandwidth • The pipeline carrying the memory from main memory

to the processor.

• If you saturate the pipeline, performance will be

impacted

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

MEMORY CACHE

• Used by the CPU to reduce the memory

latency

• A section of Memory closer to the CPU

• Stores frequently used memory

• Design assumptions for the cache.
• Data that is accessed once will more than likely be

accessed again

• When memory is accessed, memory near that

location will be accessed.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

MEMORY CACHE

• Instruction Cache – used for executable instructions

• Data cache – used to speed up data fetch and store

• L1 (Level 1) – closest cache to the CPU – fastest – smaller

• L2 (level 2) – if data is not in the L2 cache – slower than L1

but faster than main memory, larger than L2.

• L1 – L2 … caches may be shared on multi-core systems

• Many systems now have an L3 cache

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

MEMORY

CACHE

TERMS

The data is found in the cacheCache Hit

Cache Miss The data is not found in the cache. The CPU will need

to load it from a higher level cache or main memory.

You want to avoid Cache Misses.

Cache Line Data is copied from main memory in a fixed size

area. Typically 64 bytes long. Cache lines will be

copied from main memory to satisfy the data

request. Multiple cache lines may be copied.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

MEMORY

CACHE

TERMS

Dirty Cache

Line

When data is written to memory it needs to eventually

be written back to main memory. It is dirty, if the

contents have not been written back.

Write-back

policy

The policy the CPU uses to determine when to write

the dirty cache lines back to main memory.

Cache

Coherence

Multiple CPU caches have a private copy of the same

piece of memory.

The process of making sure each of these copies have

the updated “correct” content.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

DIRTY CACHE LINE AND CACHE COHERENCY

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

MEMORY

CACHE

TERMS

As the cache becomes full and more cache lines are

loaded, an existing cache line will need to be evicted.

Evicted

Replacement

Policy

The policy the CPU uses to determine which cache line

to evict. LRU is the most commonly used policy.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

MEMORY

CACHE

TERMS

A fixed size (page size) block of memory that is mapped

to areas of physical memory. Page Size is often 4K

Pages

Page Table The page table contains the translation from the virtual

address to the physical address for the pages.

Memory is allocated in pages

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

MEMORY

CACHE

TERMS

Translation

Lookaside Buffer

(TLB)

• Used to speed up Virtual to Physical address

translation.

• TLB contains the recent mapping from the page table.

Applications access memory virtually

Prefetching The CPU guesses at what memory will be needed next

and loads it.
• Guess right can save latency

• Guess wrong, can cost bandwidth and cache line evictions.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

MEMORY CACHE

PERFORMANCE

ISSUES

• Performance problems occur when there are a lot of

cache misses.

• Best to look at the ratio of cache misses to cache hits.

• Accessing memory that is in the lower level caches is

the best

• Accessing memory sequentially is the best –

prefetching

• Full Random is the worst – prefetching is loading bad

data and TLB misses.

• Cache misses may also cause further delay if the

bandwidth become saturated.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

MEMORY CACHE

PERFORMANCE

ISSUES Performance Implications of a Cache Miss

L1 Cache L2 Cache L3 Cache Main

memory

Sequential 4 clk 11 clk 14 clk 6ns

In-Page

Random

4 clk 11 clk 18 clk 22ns

Full Random 4 clk 11 clk 38 clk 65.8 ns

Sandy Bridge Latencies for accessing memory. Clk stands for

clock cycles and ns stands for nanoseconds.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

HOW MUCH CAN

LATENCY REALLY

AFFECT THE

SYSTEM?

From the SandyBridge numbers.

• Assume 3GHz processor executes 3 instructions per cycle

• Going to the L1 cache the processor stalls for 4 clk or the CPU could

have executed 12 instructions.

• If the memory is in the L2 cache the CPU could have executed 44

instructions.

• Sequentially accessing main memory would result in stalling the CPU

for 6*9 (54) instructions.

• Randomly accessing main memory could result in stalling the CPU for

almost 600 instructions.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

Cache Problems
Remember those Design assumptions for the cache

• Data that is accessed once will more than likely be accessed again

• When memory is accessed, memory near that location will be accessed.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

DATA LAYOUT CACHE PROBLEM (FETCH UTILIZATION)

Good Utilization all memory in the cache is used

Poor utilization, only half of the memory in the cache is used.

The other memory takes up cache space and also needs to be

moved thru the pipeline.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

FETCH

UTILIZATION

• In your structures,

• Put data that is used often together

• So that the used data is all in the cache and rarely used data is

not loaded into the cache

• If needed break up your into multiple structures. This is

especially important if the structures are in an array.

struct Good { struct Bad {

int used; int used;

int used2; int used2;

} int not_used;

struct Good2 { int not_used2;

int not_used; }

int not_used2;

}

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

FETCH

UTILIZATION

• Put data that is written together

• Data that changes may affect other cache lines – reduce the

number of writebacks – especially in data that is shared across

threads.

• Make sure data items are sized correctly.

• If you only need a short, don’t use an int or long. The extra bytes

are wasted.

• Using small memory allocations can be very wasteful

• Causes a random pattern

• Often times memory allocators allocate more than the real size for

headers,….

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

FETCH

UTILIZATION

• Account for the alignment of the data items.

• Keep data items in a structure that have similar sizes near each

other

Struct Bad { Struct Better {

int a; int a;

char b; int c;

int c; char b;

} }

char 1 byte 1 byte aligned

Short 2 bytes 2 byte aligned

Int / long 4 bytes 4 byte aligned

Float 4 bytes 4 byte aligned

Double (Windows) 8 bytes 8 byte aligned

Double (Linux) 8 bytes 4 byte aligned

Long double 8-12 bytes 4 – 8 byte aligned

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

Data Access Problems
Once the data is in the cache, use the

cache line as much as possible before it is

evicted!

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

DATA ACCESS –

NON-TEMPORAL

DATA

for(i=0; i<num_cols;i++)

for(j=0; j< num_rows; j++)

do something with the array element

1. Accessing in Row order would use all the memory in

the cache. Accessing in column order runs out of

cache before the memory can be reused.

2. Access the memory sequentially for prefetch gains.

3. Non-Temporal access pattern can occur if you are

just trying to analyze too much memory at once even

if it is not in a loop. Break it up into smaller chunks

and combine at the end if possible.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

DATA ACCESS –

NON-TEMPORAL

DATA

for(i=0; i<10;i++)

for(j=0; j< bigsize; j++)

mem[j] += cnt[j] + arr[i];

• If bigsize is large enough, the code will execute and

load each cache line into memory but the cache line

will be evicted before the next iteration.

for(i=0; i<bigsize;i++)

for(j=0; j< 10; j++)

mem[i] += cnt[i] + arr[j];

• This will keep the cache line in memory for the full

duration of the loop of 10 where it is used.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

DATA ACCESS –

NON-TEMPORAL

DATA

BREAK THE DATA

BEING

PROCESSED UP

INTO SMALLER

BLOCKS

double M1[cnt][cnt], M2[cnt][cnt], alpha;

for (i = 0; i < cnt; i++)

for (j = 0; j < cnt; j++)

M1[i][j] += M2[j][i] * alpha;

for (ii = 0; ii < cnt; ii += 8)

for (jj = 0; jj < cnt; jj += 8)

for (i = ii; i < ii + 8; i++)

for (j = jj; j < jj + 8; j++)

M1[i][j] += M2[j][i] * alpha;

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

CACHE

COHERENCY AND

COMMUNICATION

UTILIZATION

• When 2 or more threads share a common memory

area and any data is written, cache problems can

occur.

• When one thread writes to the area the cache for the

other thread(s) will be invalidated.

• Care should be taken to reduce the number of writes

into shared memory.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

FALSE SHARING

• 2 or more threads are using data in the same cache

line.

• 1 thread writes to the cache line and it invalidates the

data in the other thread(s) cache line

• Often seen when allocating arrays of data based on

the number of threads and shared by the threads

• Avoid false sharing by placing data that can change,

close together. Reading data does not destroy the

cache.

• Align memory on a cache line boundary. (pad

structures if necessary)

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

RANDOM MEMORY

ACCESS

• Caches work best when memory that is near an

already loaded cache line is accessed.

• Memory allocations produce random access to

memory.

• Random access patterns can cause TLB misses

which can be costly

• Linked list, hashes, tree traversals can also

produce a random access memory pattern.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

TOOLS

• Amplifier – with general exploration will tell you some

information about the performance. Several of the

counters deal with the cache. The tool will point you to

the code and assembler code that is causing the

problems.

• ThreadSpotter –It is solely looking at memory usage

and will show you the areas in your program where the

cache is not utilized thoroughly, where sharing

between threads is hurting the case, false sharing and

loop order issues. Gives source code and a good

description of the issues involved.

• I use both tools to get a better idea of where we are

spending performance cycles.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

http://sww.sas.com/saspedia/File:ThreadSpotter_Dash_Board.png
http://sww.sas.com/saspedia/File:ThreadSpotter_Dash_Board.png

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

http://sww.sas.com/saspedia/File:T_issue.png
http://sww.sas.com/saspedia/File:T_issue.png

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

http://sww.sas.com/saspedia/File:Tspot_help.png
http://sww.sas.com/saspedia/File:Tspot_help.png

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

SUMMARY

• Cache’s were designed with the assumption that

• once memory is loaded it will likely be accessed again.

• Memory that is accessed is likely close to other memory

that will be used.

• Memory caches have improved performance but if a

developer doesn’t understand the principals of the

cache and doesn’t design with caches in mind, their

application will suffer performance problems.

• Remember each time the CPU has to go back to main

memory, the CPU will be stalled and not performing

useful work.

• Not all issues that may be discovered will be fixable.

Copyr i g ht © 2013, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

CLAIRE.CATES@SAS.COM

QUESTIONS

