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Abstract 
 

Little’s Law is well known: number of concurrent users of a resource equals 
the product of arrival rate and the holding time of one user.  Somewhat less 
known is the fact that Little’s Law is based on the assumption of stationarity 
of the underlying processes.  But at The Knee, all assumptions break down 
because this is where the system is not stationary anymore.  Without going 
into an existential discussion of The Knee, this paper proposes a solution 
that allows an estimation of concurrency that is “not too low, not too high; 
just right” for non-stationary conditions. 

 
 
Little’s Law is well known: number of concurrent users (Q) of a resource during a period 
of time is equal to the product of average rate of arrival of users (X) and the average 
holding time of one user (R):  

Q = X * R               (1) 

 
From this description, it follows that it doesn’t matter what the duration of the time 
interval is, as long as the X and the R are measured in the same time interval. 
According to its creators ([1]): 
 

 “We require stationarity assumptions about the underlying stochastic 
processes…” 

 
But what if the underlying stochastic process is not stationary (Figure 1, X > 50)?  For 
example, while the holding time (R) was nearly constant at lower workloads (X < 50), we 
arrive at a value of X where the response times will be increasing more rapidly than at 
lower workloads?   



 
 

Figure 1: Illustration of Little’s Law in an unstable system: a potential underestimation of 
concurrency. 

 
In Figure 1, processing time (R) is constant up to X = 50, but at higher X, the response 
times start going up.    We are interested in the period of time when X was between 50 
and 95 arrivals per second.  
 
The horizontal red line corresponds to applying Little’s Law literally in a non-stationary 
system: area under the red line will correspond to the estimation of the number of 
concurrent sessions in this interval of arrival rates. 
 
Why is it a bad idea in non-steady-state conditions? 
 
Using Little’s Law in this situation becomes a dangerous proposition, as all of a sudden, 
we lose the R as a valid average measure of holding time for this time interval: it will 
depend on the request arrival rate.  In other words, on the knee, Little’s Law assumption 
of stationarity of parameters is not valid, and technically we cannot use it anymore: the 
thick solid red line representing literal application of Little’s Law in this scenario 
demonstrates that we will underestimate the number of concurrent sessions (users). 
 
 



What to do? 
 
One way to solve the problem would be to draw a straight line connecting the R(X1) and 
the R(X2) (Figure 2) and compute the area under that line.   But that will cause a severe 
overestimation of the number of concurrent sessions and therefore a gross oversizing of 
the system if our purpose is capacity planning.  
 

 
Figure 2: Illustration of Little’s Law in an unstable system: an overestimation of 

concurrency. 
 
The next logical iteration would be to break the big time interval where arrival rates vary 
widely (from X1 to X2) into intervals small enough that  
 

 
 

Then we sum them all up for the time interval of interest: 
 

 
 

  But that is equivalent to integrating R by dX: 



 

 

 
This approach (Figure 3, Eq. 4) will size the system “Not too big, not too little; just right”. 

 
 
Figure 3: Concurrency measured as the area under the red segments in the R(X) curve 
 
Alternatively, in any system – stationary or not – would-be-stationary response time can 
be computed as the derivative of concurrency by the throughput, and vice versa.   
Generalizing, it is safe to say that, if we have a theoretical or empirical relationship of 
two parts of the equation (4), we can easily obtain the third component by integrating (if 
looking for Q) or differentiating (if looking for R or for X). 
 
And if we have time intervals that are too granular, and we only have the average 
(mean/median) R and the average (mean/median) X for these intervals? 
 



If we have no insight into the system dynamics at a finer granularity, then there is 
nothing that can be done; we can only “hope for the best”, assume that the process was 
stationary within each given time interval and apply Little’s Law directly.  After all, if the X 
did not vary much within that interval, we can approximate the integration (4) by the 
area under the {(X1, 0), (X1, R1), (X2, R2), (X2, 0)}. 
In this case, using the Figure 2 approach will be preferred to Figure 1, as it will allow us 
to oversize the system sufficiently that it will be able to handle whatever micro-level 
perturbation may occur within that time interval.  
If concurrency and throughput are given mathematically as functions of one another or 
as functions of a business metric (see more about that [2]), then we can get the service 
time as the ratio of these two functions.  In this case, at steady-state conditions, 
response time will asymptotically be converging to the dQ/dX: 
 

 
 
Conclusions 
 
In situations where sizing the system is dictated by the concurrent traffic (e.g., 
determining the number of connections to a database), and if we cannot allow ourselves 
to oversize it (and we can never afford to undersize it), we need to come up with a 
“Goldilocks” solution.  
 
The knee is used in this paper merely as an example; the same approach can be 
applied to any source of instability – e.g., different traffic mixes coming into the system 
at different times of the day provides a plethora of other examples, which are outside 
the scope of this paper, but to which the same principle can be applied.  Care must be 
taken to identify the intervals of X within which the system can be assumed to be in a 
quasi-steady state, but even when the system is unstable, we can still use Little’s law.   
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