
Oracle Redo Log Performance Issues and

Solutions

Sun Hongda

Abstract

The redo log plays a prime role in Oracle database’s core functionality. However it

imposes disk i/o for the redo log’s inherent functionality, increased i/o can highly affect

the Oracle performance. In this paper I am analyzing the performance issues related

to the Oracle redo log, and solutions to address those issues, also I am covering how

to minimize the overhead of redo logs and improve the overall database performance.

Concept review

The redo log buffer is a RAM area defined by the initialization parameter log_buffer

that works to save changes to database, in case something fails and Oracle has to put

it back into its original state (a “rollback”). When Oracle SQL updates a table, redo

images are created and stored in the redo log buffer. Since RAM is faster than disk,

this makes the storage of redo very fast.

Oracle will eventually flush the redo log buffer to disk, called online redo log. This can

happen in a number of special cases, but what’s really important is that Oracle

guarantees that the redo log buffer will be flushed to disk after a commit operation

occurs. When you make changes in the database you must commit them to make the

changes permanent and visible to other users.

In case of Oracle’s Archive log mode , online redo can be achieved and called as

offline or achieved redo log ., In case of No archive log mode Oracle writes in rotation

through its redo log groups, it will eventually overwrite a group which it has already

written to. Data that is being overwritten would of course be useless for a recovery

scenario. In order to prevent that, oracle has introduced the archive log mode,. In

case of archive log mode, Oracle makes sure that online redo log files are not

overwritten unless they have been safely archived at some other place in disk. Some

key points are -

� A database can be recovered from media failure only if it runs under archive log

mode.

� Oracle’s background process LGWR process is responsible to write the redo log

buffers to disk.

� Oracle’s background process ARCn is in-charge for archiving redo logs , if

automatic archiving is enabled by keeping achieve log mode On. All changes that

are covered by redo are first written into the log buffer (RAM). The idea of storing

redo log in the RAM is to reduce disk I/O. Of-course, when a transaction commits,

the redo log buffer must be flushed to disk, otherwise the recovery for that commit

could not be guaranteed. It is LGWR (Log Writer) process which is responsible for

redo log buffer flushing into disk .

Issues

Excessive redo log generation is one of the potential issue related to redo log, Impact

of excessive redo generation is very high and impacted many areas;

� Higher CPU usage - Generating redo records and copying them to log buffer

consumes CPU resources

� LGWR process need to work hard if the redo log generation rate is very high.

� High redo log generation resulted into very frequent log switches and might

increase the checkpoint frequency which in turn slow down the overall disk

performance

� In case of archive log mode,

� Arch process leads to generate more archive log files. This again introduces

additional CPU and disk usage.

� Even backup of these archive log files uses more CPU, disk and possibly

tape resources.

� Redo entries are copied in to redo buffer under the protection of various latches,

and thus excessive redo log leads to increase in contention for redo latches

Another potential issue is the disk performance, which is related to the above Issus, if

database generates excessive redo logs, it will slowdown the disk performance

drastically. Database performance is worse in case of heavily loaded environment,

more load on database server leads to more disk I / o due to inherent nature of redo

logs to be written to disk.

We can take a conclusion that, the main issues of redo logs are its rate of

generation and disk performance, so the key aspect of redo log performance

tuning is to control excessive redo log generation and improve the disk performance.

Redo log size

Shamsudeen.A.(2008) has done a excellent research on how the various factors are

affect the redo log size, In his research, Table 1 below showing factors which affect

redo log size -

Number Factor

1 the number of index

2 the number of threads

3 the type of SQL statement

4 number of columns

5 commit frequency

6 cache size

Table 1, the factors affecting redo log size(1)

Emrick.S.E.(2006) also done an excellent research about oracle business

reinforcement rules affect the oracle redo log performance. He divided the factors

related to business reinforcement rules affect the redo log into following categories,

please refer the Table 2 below -

Number Factor

1 the Uniqueness Enforcement through

primary key or unique key constraint

2 the referential integrity constraint

Table 2 the factors which affect redo log size(2)

However their research did not conclude the most affecting factors to reduce

excessive redo log generation , In order to enhance the solution I came-up with a

case study based on above factors to find out the rationale of redo log size changes

under different conditions , listed in below table Table3.

In order to find out the factors which can reduce the size of redo log generation

among those factor listed in above research, I have summarized their results in one

table and created a chart by using data in Shamsudeen.A.(2008) and ratio R in

Emrick.S.E.(2006), The results are listed in table 3 with test number. NNNNumberumberumberumber TTTTest caseest caseest caseest case Redo sizeRedo sizeRedo sizeRedo size
1 No indices(10000rows) 30107436

2 One index(10000rows) 38043080

3 Additional Six indices(10000rows) 202172680

4 one thread delete+insert 21735972

5 one thread update using merge 4608084

6 Delete+insert: two thread thread1 18432752

7 Delete+insert: two thread thread2 26020552

8 update using merge;thread 1 4612968

9 update using merge;thread 2 4612968

10 Update all columns except id column 419249316

11 update 3 varchar2(100)columns and 3 number columns 261210412

12 update 1 varchar2(100) columns and 3 number columns 145939212

13 commit frequency single row 7620572

14 commit frequency 10 rows 4296472

15 commit frequency 100 rows 4002344

16 commit frequency1000 rows 4217152

17 commit frequency 10000 rows 4238944

18 cache size 2mb 15419184

19 cache size 10mb 4975192

20 cache size 100mb 2628168

21 cache size 1000mb 2393420

22 Delete+insert Unique index failed transaction one thread(parent table) 52601052.24

23 Delete+insert No Unique index failed transaction one thread(parent table) fail 91725801.84

24
update 1 varchar2(100) columns and 3 number columns with unique index(parent

table) fail
161992525.3

25
update 1 varchar2(100) columns and 3 number columns with Non unique

index(parent table) fail
357551069.4

26 Deleted parent table and insert child table failed transaction(Unique index) 64990556.28

27 Deleted parent table and insert child table failed transaction(non Unique index) 592365952.4

28
update 1 varchar2(100) columns and 3 number columns with unique index(child

table) fail
210152465.3

29
update 1 varchar2(100) columns and 3 number columns with non-unique index(child

table) fail
103616840.5

Table 3, the test case of redo log size

As illustrated in Figure 1, we can see the different cases of redo log generation are

changing under different conditions, redo log size 592365952.4419249316357551069.4261210412210152465.3202172680161992525.3145939212103616840.591725801.8464990556.2852601052.2438043080301074362602055221735972184327521541918476205724975192461296846129684608084429647242389444217152400234426281682393420

2710251128324122923262221746181319985141716152021
test case number

redo log size

Figure 1, the test case of redo log size

To conclude, I have summarizes top five test cases which generate less redo log in

table 5.

NNNNumberumberumberumber TTTTest caseest caseest caseest case Redo sizeRedo sizeRedo sizeRedo size 21 cache size 1000mb 2393420 20 cache size 100mb 2628168 15 commit frequency 100 rows 4002344 16 commit frequency1000 rows 4217152 17 commit frequency 10000 rows 4238944

Table 5 top five test case reduce redo log size

The Table 5 shows that large cache size cab reduce the corresponding redo log

generation, as test case number 21 has lowest redo log generation due to large cache

size. Another factor commit frequency is also a key factors to reduce redo log

generation, compared to the test case number 15 test case number 16 has higher

commit frequency and lower redo log generation, which indicated high commit

frequency can reduces the redo log generation.

Reliability and Performance

From operating system point of view, the only issue related to redo log is tradeoff

between system reliability and system performance. Reliability is the key aspect of an

operating system, thus RAID technology has been used to provide the high reliability

solutions. However RAID will increase the disk I/O which is already been at higher

side due to oracle redo log maintenance. It is vital to analyze which level of RAID can

yield better write performance.

 Table6, Compare different RAID types source: Whalen(2005)

Whalen(2005) has outlined performance effect under the different levels of RAID. The Table

6 shows that RAID 5 has best of all fault tolerance. However, RAID 5 have very poor write

performance. Furthermore, RAID 0 can be ignored as it cannot provide Fault Tolerance.

Amongst all RAID systems .By the above Table 6 it has been concluded that the RAID 1 or

RAID 0+1 can achieve optimal redo log performance in addition to good system reliability.

Faster disk or more memory

In last twenty years processor speed has been increased exponentially, but at the

same time, conventional storage access time only improved marginally, resulted is a

massive performance gap between the two. Concerning the same many solutions has

been proposed aiming to close the gaps between the two. One of the well accepted

solution is the use of Solid State Disks instead of conventional disk media.

Hutsell,W and Mike.A.(2009) defines that a Solid State Disk(or SSD) is a storage

device that does not rely on mechanical parts for reading from and writing data to

disk . However, they use memory (DDR or Flash) as the primary storage media. This

generally result in storage speeds far greater and getting the same speed practically

impossible to achieve by using conventional magnetic storage devices, they have

done a very good research which is shown below in Figure 2 below -

Figure 2, HD and SSD TPCC Source: Hutsell,W and Mike.A.(2009)

As we can spot in the Figure 2, the SSD Server is faster than HD server. It shows SSD

4 Server has highest TPS, while the number of client reaching 300 and HD2 Server

has lowest TPS at the same time. There are certain other alternative solutions

available in market to achieve the similar disk performance as SSD. One of solution is

adding faster disk chains to the computer, the other solution is to increase the disk

buffer in memory. Matthew .Y.(2008) has done the research to compare the

performance of those solutions

Figure 3, Innodb Buffer size source: Matthew .Y.(2008)

The Figure 3 shows data buffer and different type of disk’s effect on disk TPM. The

disk of MFT and MTRON has more number of disks. Also, these both type of disks are

faster than Raptor. Under the same disk Raptor, while buffer size is increasing from

500MB to 1GB, the TPM of disk is increasing from 285.15 to 354.97, hence Disk TPM

is increasing In case of more memory addition.

If the type of disk changes from Raptor to MFT , it will sharply increasing TPM from

285.15 to 4328.49 i.e. 15x faster than Raptor. However, by increasing memory up to

2.75GB increases Disk TPM from 285.15 to 625.8 i.e. only 2x faster.

The Figure 3 is also indicates if Disk Raptor is changed to MFT, and the innodb Buffer

size become 1GB, the disk TPM increases from 285.15 to 6046.75, i.e. 21x faster. It

conclude that the faster disk is more important in order to speed up disk performance.

But at the same time it is even better to add more memory as well . For the system

engineers to improve the disk i/o performance , recommended solution in priority

order given below -

1. Faster disk with higher main memory

2. Faster disk

Summary

In order to reduce the redo log generation, DBAs can increase the main memory

cache size, one should also increase the commit frequency to reduce the disk

i/o. However, for the faster i/o, DBAs can add more disk chains, for an economic

solution, if cost is not the factor then it is suggested to use SSD disks. It is also

recommended that one should not use the RAID 5 for system reliability as it will

marginally lower the disk performance.

Reference

Shamsudeen.A.(2008) redo internals and tuning by redo reduction[Electronic version]. retrieved

May 10,2010 from

http://orainternals.files.wordpress.com/2008/07/riyaj_redo_internals_and_tuning_by_redo_red

uction_doc.pdf

Emrick.S.E.(2006) The Oracle Redo Generation [Electronic version]. Retrieved May 25,2010 from

http://hosteddocs.ittoolbox.com/EE010306.pdf

Craig .S (2007). Forecasting Oracle Performance. New York: Apress

Matthew .Y.(2008) Common Performance Mistake; Disk [Electronic version]. Retrieved June

10,2010 from http://www.bigdbahead.com/?p=49

Confio software .(2009) Log File Switch Completion [Electronic version]. retrieved June 1,2010

from http://www.confio.com/English/Tips/Log_File_Switch_Completion.php

George(2007) Comprehensive RAID performance report [Electronic version]. retrieved June

10,2010 from

http://www.zdnet.com/blog/ou/comprehensive-raid-performance-report/484?pg=3

Whalen(2005) Overview of I/O Performance and RAID in an RDBMS Enviroment retrieved June

10,2010 from http://www.perftuning.com/pdf/RAID1.pdf

Hutsell,W and Mike.A.(2009) Faster Oracle Performance with Solid State Disks retrieved May

1,2010 http://www.texmemsys.com/files/f000139.pdf

ACKNOWLEDGEMENTS

I greatly appreciate the guidance, valuable feedback and insight from Shailesh

Paliwal , Denise Kalm for all her encouragement.

Author’s Profile

Sun Hongda is Cisco Certified Network Associate, Certified Internet Web Security

Analyst, Certified Internet Web (CIW) professional, MSc in Networking and Web

Technology (UK).He is working in TAIJI Computer Corporation Company limited,

E-government research center, which is The Leading supplier of government

IT-service in CHINA. He works as system engineer and mainly focuses on Web

system performance and reliability.

