

The Association of System
Performance Professionals

The Computer Measurement Group, commonly called CMG, is a not for profit, worldwide organization of data
processing professionals committed to the measurement and management of computer systems. CMG members are
primarily concerned with performance evaluation of existing systems to maximize performance (eg. response time,
throughput, etc.) and with capacity management where planned enhancements to existing systems or the design of new
systems are evaluated to find the necessary resources required to provide adequate performance at a reasonable cost.

This paper was originally published in the Proceedings of the Computer Measurement Group’s 2003 International Conference.

For more information on CMG please visit www.cmg.org

Copyright © 2003 by The Computer Measurement Group, Inc. All Rights Reserved

Automating Process and Workload Pathology Detection

Ron Kaminski
Safeway Inc.

There is no perfect code, and the chance for unintended and resource-intensive misbehavior increases with
complexity. We call these miscreants “pathological processes”. Pathological processes are present on an
astonishing number of systems and they account for a significant percentage of the user-perceived problems that
generate requests for performance investigations. The combination of shrinking IS budgets, lowering (or non-
existent) capacity planning head count, increasing machine count and ever-increasing software complexity means
that while a well trained, experienced analyst could discover these problems, it is impossible to examine every
machine in depth on a regular basis. The good news is that many of the most common pathologies have resource
consumption signatures that can be automatically recognized. Once pathologies are found, modern e-mail,
problem ticketing and web interfaces can speedily notify the code owners who can address the issue, often before
they or their end users notice a performance impact. This paper presents examples of pathologies we have
successfully detected, provides formulas we use to find them, offers some programming hints that we picked up
the hard way and ends with a challenge to the reader to define, find ways to detect, and publish other process
pathology signatures for the common good.

1 Introduction – The problem is massive

Senior capacity planning and system performance
consultants are often tasked to find and resolve
problems in emergency situations where there is a
bottom line impact. About 35% of the time, the client’s
problems are due to undetected, miscreant processes
consuming huge amounts of resources for no practical
business reason. Often, the real solution is to simply
stop the offending processes and fix the code, thus
avoiding the million-dollar hardware expenditure that
the client was expecting.

If the client originally asked for a workload growth
study, the prudent analyst must now find a sample
without process pathologies as a base for their
analysis and models. Engagements tend to lengthen
when it is difficult to find a period when “happy users”
were acting as they would on a well-behaved system.

Any good performance analyst has seen so many
examples of these process pathologies [Smith and
Williams, 2001, 2002] that they can recognize them
just by looking at a consumption graph, appearing as a
“guru” to the uninitiated. In reality it is astonishingly
simple to detect these pathological processes, once
you know what data to collect and what to look for.

While working as a consultant, there is little reason to
staunch the flow of easy money rolling in due to these
process pathologies. However, at some point, the

allure of consulting may wear thin and you may find
yourself at a huge site, as an employee, with different
motivations.

As a new capacity planner, you are often flooded with
their backlog of issues, and once again, a significant
number of them are caused by process pathologies.
While your new boss will be impressed by your ability
to spot process pathologies, at some point you may
tire of the huge queue of requests that are preventing
you from doing the things you want to do, like writing
CMG papers. You will begin to look for ways to
automatically detect and possibly trouble ticket these
pathological processes.

This paper will discuss pathologies we have found, our
methods of automatically detecting them and hints to
use if you plan to follow our example. The challenge to
you is - “Find more, and publish!”

1.1 Getting Started

To find process pathologies, you need information
about process resource consumption. You will also
need some method to analyze all that data, be it a
vendor product, a spreadsheet or a language you are
comfortable with, such as perl.

The availability and accuracy of these metrics varies
wildly by operating system, and how they were
obtained. You can spend many years gaining a deep

understanding of the mathematical and programming
complexities involved in metric collection

Collecting data efficiently and with mathematically
valid sampling and summarization methods is a task
that can easily overwhelm large teams of people. For
most time- and personnel-constrained shops, the
answer will be purchasing vendor-supplied collectors
that can help you collect, reduce and use the data for
reporting, modeling and provide other useful analysis
tools. To be sure, you may add some custom
functions, but first find a good collection and tool
vendor and there will be less to do.

If you do choose to go it alone, be sure to keep
collection overhead low. Performance problems can
often be caused by the rotten code used to look for
performance problems. Also, understand what is being
collected, and what is not and then, calculate the
capture ratio, which is…

the sum of all allocated process’s consumption
the machine’s total consumption

…in each of the sample periods. On most UNIX
systems, these calculations demonstrate that you
need to run accounting and post process it against
your periodic collection technique (most try ps) and
then, for each process, in each period, calculate when
and where all those CPU seconds and IOs went. Yuck!
Those vendor-supplied solutions are starting to look a
lot more attractive, aren’t they?

The biggest surprise that most analysts face is that the
vast majority of numbers that spew from the various
operating systems (and many tools) are virtually
useless, somehow flawed, or computed in error-prone
ways. Concentrate initially only on total process CPU
and IOs during a sample interval. Focus on automating
the easy “wins”, saving time to pursue the esoteric
problems later.

1.2 What are Process/Workload Pathologies?

Let’s start with the hypothesis that generally,
process/workload resource consumption should
correlate with the volume of business functions
performed. If a process or group of processes
(workload) don’t behave this way, something is wrong.
An example might help.

Figure 1 shows a problem-free week on a two CPU e-
mail processing system. Far more e-mail is sent during
normal working hours and to a lesser extent, during
hours when people are awake on the weekends. If the
resource consumption on the system follows this

pattern, we can surmise that at least some of the
processes do not fit our definition of “pathological”.

Figure 1, A Normal Week

Sadly, not all weeks are normal on this system.

Early in the next week, (Figure 2) someone “improved”
a system utility, adding a check that reads a growing
log file. Around lunch on Wednesday the 16th, an
operator abnormally exited a utility, and thought
nothing of it. However, his process lived on as a CPU
loop, perpetually trying to find him until the machine
was rebooted (due to performance complaints) a week
later.

Figure 2, A Ramp Starts, A Loop Thrives

After the reboot on Wednesday the 23rd, the
“improved” utility continued to read an ever-larger log
file to examine the last record. No one noticed it.

C
P

U
s

C
P

U
s

C
P

U
s

Another operator caused more loops the next week,
on Monday the 28th and again on Tuesday the 29th.
Then mail really slowed down for ten days! (Figure 3)

Figure 3, A Loop, Two Constrained Loops
And A Big Ramp Grows Bigger

On Thursday the 8th, the loop was identified and “the
problem” was “fixed”. But mail still seems slow, and
appears to be getting worse each day. Hey! Why does
that “improved” system utility seem to increase its CPU
utilization each day?

This example is based on historical consumption data
(and user complaint calls!) from several actual
systems, combined to show what can happen due to
pathological processes that remain undetected. Some
pathologies are violent, halting desired processing;
these are usually immediately detected, but many lurk
undetected, accumulating more and more expensive
machine resources, adding more and more delay to
the end user’s response time. An outage might occur
many days after the event that spawned the problem.

Without methods to isolate individual process
consumption, these loops and ramps might have never
been found. Whenever you hear phrases like “We boot
this system once a week or it stops working”, you have
a big clue that what is really happening is that they are
clearing out repeated buildups of undetected
pathological processes. Wouldn’t it be nice to isolate
and eliminate the problems and the weekly outages for
reboots?

In each of these cases, with 20/20 hindsight, we can
say that the pathological processes are processes that
consume resources in amounts either negatively
correlated with business usage or in a pattern all their
own.

1.3 Common Pathologies

There are many common process pathologies; the
following is not an exhaustive list:

The Simple Loop - The simple loop is a process that
takes over an entire CPU’s worth of processing for
each period it loops. Usually, a simple loop resides on
a multiprocessor server with a lot of excess capacity,

so it can
continue for a
long time. It
may act
normally for a
period, then
start looping
due to some
unique code

path or environmental change. 99% of the time a loop
will continue indefinitely. In figure 4, note how the first
loop started on the 12th and continued until stopped
late on the 14th, but because they addressed the
symptom and not the cause, it recurred on the 15th.
That’s why repeated (we use daily) trouble tickets are
great. Eventually, the programmers get sick of them
and fix something.

Note that loops do not have to stay in one CPU to be
loops. In most modern, multi-processor operating
systems, the loops will happily switch from one
processor to another, unless someone
programmatically locks the process into one. Then, it
efficiently avoids context switches and loops even
faster!

The Hum This one is controversial, but we believe that
when consumption rises above certain thresholds, it is
a pathology. Some processes are written to check an

input queue of
some sort for
work, process
any found, and
then wait a bit
before trying

again.
Sometimes, this
is horrendously

inefficient code, or someone reduces the wait interval
to very low values in hopes of “improving
performance”.

In any case, the process consistently consumes
significant system resources even when there is no
real work for it to do. A lot of web-servers or processes
whose roots are in older, non-event based systems

C
P

U
s

C
P

U
s

Figure 4, A Simple Repeated Loop

Figure 5, The Hum

are saddled with these. An extreme hum (we call it a
shriek) looks a lot like a loop.

The Constrained Loop – In the mail system example,
the single original loop could get all the resources it
wanted, and it consistently took them. Starting on the
29th, and continuing until the 8th, there were more
loops and real work than available resources, so the
system saturated, assuring that the looping process
cannot monopolize the CPU. Simply put, a constrained
loop is any loop that, due to competition for scarce
resources, can’t get an entire CPU to itself, so it grabs
all it can.

Figure 6, Three Constrained Loops On A System
With Significant Real Workload

In the figure 6 above, there are three gray constrained
loops on top of some real work.

Constrained
loops don’t
have to be
caused by
competition

from real
work. We
have found
unused, yet

completely
saturated

Development systems with more loops than
processors.

The Simple Ramp – In our mail system example, the
“improved” system utility is a great example of a ramp.
It, like most ramps, results from a bad programming
decision such as reading to the end of a file to get the

Figure 8, The Simple Ramp

last record, and forgetting that this file is going to get
huge over time. The impact of bad programming
choices like this are almost never found in
development, because the test cases are rarely at
production sizes. Memory leaks can also form ramps
when you chart the total memory allocated over time.

Ramps can have many different slopes. Single day
ramps are often easy to see. Slowly increasing multi-
day loops like the example above are insidiously
creeping up a little bit at a time and are often missed.
We recommend looking at both short term (daily) and
long term (monthly+) views of process resource
consumption to detect these.

The Bumpy Ramp – Most ramps are really bumpy
ramps, which are ramps that do have periods of
negative slopes. How can this be?

Figure 9, The Bumpy Ramp

Imagine a process with a slow memory leak. During
normal processing, it allocates memory due to real
demand and then frees it. Often this pattern follows
business use. If the leakage rate is smaller than the
de-allocate rate when business demands fall, you will
have periods of negative slope. Left undetected, this
one will eventually become a problem.

Bumpy ramps are usually due to a single continuous
process, but if the process is reset or terminated and
then restarted, you really have an example of …

Figure 10, The Saw Tooth

The Saw Tooth – Ramps that reset periodically show
up as a “saw tooth” utilization profile. If a response
time increase or service interruption happens at the
peaks, such as a disk filling up unnoticed we define it
as a pathology. Since multiple processes can
contribute to the growing ramps, this is often a
workload pathology. Often, the reason people do not

0

1

2

Time

C
PU

 C
on

su
m

pt
io

n

0

1

2

Time

C
PU

C

on
su

m
pt

io
n

0

1

2

Time

C
PU

C

on
su

m
pt

io
n

0

1

2

Time

M
em

or
y

C
on

su
m

pt
io

n

0

1

2

Time

C
PU

C

on
su

m
pt

io
n

Figure 7, Five Loops
No Real Workload Present

detect pathological “saw tooth” patterns is that they are
examining too small of an interval, or too few. Growing
log files, database rollback segments filling disks, and
repeated memory leaks are often sources of saw tooth
patterns. This may take time, but once diagnosed, the
cure can be obvious.

Many More – Any process that requires repeated
human intervention to detect and correct might be a
workload or process pathology that we can
automatically find.

2 The Challenge

Devise simple algorithms that efficiently detect process
pathologies from data sources.

We repeatedly tried and failed to find “absolute”
algorithms that found all problems. Our breakthrough
came when we decided to divide and conquer, i.e.
develop simple algorithms to find one type of
pathology, most of the time. It is okay to miss a few.
You will be quite busy with the ones you do find. Later,
as things calm down, try more complex strategies.

2.1 Rules of the Chase

Ideally the solutions would:

• Follow a “single data collect, multiple use”
doctrine

o Collect process data
o Turn on accounting if needed

• Embrace simplicity
• Find a large percentage of the problems
• Provide most, if not all, information needed to

address the pathology at the time of
notification.

• Embrace parameter files to minimize the need
to change code; it is error prone and tedious

• Embrace fuzzy logic, if needed. Example: If a
process meets 3 of 5 criteria, it might be a
pathology

• Use tools that are commonly available, the
cheaper the better

o Perl rules!
o Spreadsheets are ubiquitous, but

macros can be tough to keep running
long term

• Combine notifications into a minimal set of
messages

o Limit numbers of email notifications
• Consider a FYEO (For Your Eyes Only)

class…
o Don’t write tickets for yourself

• Run private (FYEO) for a while before going
public.

o Nothing is worse than false positives!
o Build guru status by mysteriously

finding all this weird stuff that
everyone else misses!

• Denny’s Law - Never alert on something that
you can’t explain to someone paged at 3:00
AM. [Brewer]

• Ron’s Law -Never add over a thousand nodes
to your automated check system on a Friday
afternoon or before you take a vacation!

2.2 Criteria for Success

• It is not a “who’s method is better” argument. If
your method works at all in your situation, it is
a great method!

• Strive for low, or no, false positives
• Seek simplicity, low resource consumption,

and elegance
• Always code for exceptions! Always!

Notification fatigue due to repeated false
positives will kill your effectiveness!

• Write for the whole world; comment your code
• You don’t have to be perfect! You just have to

try

Our perl-based solution checks all processes during all
hours on all 2000+ nodes and averages about three
seconds per node.

3 How we currently do it

At Safeway Inc., we run automatic process pathology
detection tests on nearly 2000 AIX, LINUX, Solaris and
various flavors of Windows distributed systems nodes
each day. It is not uncommon to find 8-12 pathologies
every day, and sometimes many more! Since we
started noticing and alerting automatically, our
requests for in-depth performance investigations have
dropped off dramatically. It is nice to spot a problem
before the users do!

Start a new test on a subset of nodes, and widen it out
when it is proven. Run FYEO for a while, and do the
pre-training, then warn the support staff about what is
coming. Expect to spend significant phone time
explaining why the programmer on the other end of the
line should care about the problem. Graphic evidence
accompanying your calm, yet firm, explanations is
indispensable, so get good at generating graphs
quickly.

3.1 How To Detect The Simple Loop

Theory: A process that uses an entire CPU for an
extended period of time is often not desirable. Detect
and report loops that exist for extended periods of time

Practice: The real world is less pure. The simple loop
is a great place to start, because there are so many of
them.

When you start hunting you will quickly notice that it is
almost impossible for a process to get 100% of a CPU,
indeed, on some operating systems, a loop would be
lucky to get 87%. Once we decided to forget precision
and learn to love brute force, we found that specifying
a mean and allowable variation worked quite well.

Exception Note: Whatever automated checks you do,
and especially in the case of Simple Loops, you will
encounter exceptions. Program in exception handlers
from the start, or expect embarrassing interruptions in
notification while you wrestle with your code. In our
shop, we have several statistical packages that run off
“in memory” databases to calculate amazing things
that enable us to serve you better. These can run for
many hours, and they look a lot like a loop.
Discussions with the analysts that run them helped us
find that they also can get stuck on bizarre queries,
and the analysts wanted to be notified when that
happened. Working together, we decided that any time
one of these loops ran for 16 or more hours out of 24,
it deserved a ticket. With this exception in place, there
are no “false positives”, and resources aren’t wasted
on runaway queries any more.

Some multithreaded database processes that are just
busy enough can look like loops at the process
accounting level. Be ready to find exceptions with
processes like sqlserver.

Parameters We Use: Earlier in “Rules of the Chase”
we mentioned that you should probably approach
these searches via parameters. Here are the ones we
use for simple loops:

o Function (process_loop)
o Operating System (AIX, HPUX, Linux, Solaris,

WindowsNT, Windows2000, etc)
o Allowed Deviation%
o Loop Mean

o Example: 0.05 Allowed Deviation with 1.00
Loop Mean finds any process whose CPU
consumption was between 95% and 105%
of an entire processor

o Why a lower and an upper limit?
 The lower says “at least this busy”

 The higher says, “no busier than”,
and helps weed out busy multi-
threaded processes like sqlserver.

o Greater than 1?
 It happens. Remember, when

sampling computers, there is
always sample error, and
sometimes there can be more
CPU attributed to a process than
there were seconds available.

o Calculation method (span i.e. it must loop for a
span of time)

o Hours per day to qualify (i.e. the process must
loop for at least 8 hours in 24 to trigger)

o Output choice (mail, trouble ticket system or file,
node history file, other)

o Loop File name (if written to a file) or whatever
method you use to interface with your trouble
ticketing system

o Mail Recipients

Actual Loop Checker Parameter Examples:

o process_loop,Linux,.05,1,span,8,summary_mail node_history

trouble_ticket,
/a_directory/ticket_logs/loops,ronmail\@the_firm.com
linux_dudemail\@the_firm.com

o process_loop,Windows2000,.08,0.92,span,8,summary_mail
node_history trouble_ticket, /a_directory/ticket_logs/loops,
ronmail\@your_firm.com dennymail\@your_firm.com

Parameters We Use for Loop Exceptions:

Exception handling for “Simple Loops” is easy! All you
need to do is add hours.

Example: If a normal loop triggers at 8 hours in 24, this
one has to loop for 8 more (16 total) before it triggers.
What happens if you add 24, or any number higher
than (24-(hours-per-day-to-qualify))? The process
never triggers.

o Function (process_loop_exception)
o Operating System (AIX, HPUX, Linux, Solaris,

WindowsNT, Windows2000, etc)
o Exception process name
o Additional hours needed to qualify as a loop

Actual Loop Checker Exception Examples:

o process_loop_exception,AIX,DISGUISED_NAME,8
o process_loop_exception,WindowsNT,sqlservr,12
o process_loop_exception,Windows2000,sqlservr,12

That looks pretty simple, doesn’t it?

3.2 How To Detect The Constrained Loop

This one was tough. We found our first test case by
examining a node somewhat infamous for Simple
Loops that had not triggered any lately. What we found
resembled the example presented earlier in the paper
(see Figure 6), a saturated node, with more loops than
available processors. Since a process likely to loop
might choose to do it a lot, you need to find these.

Theory: A process that would use an entire CPU for
an extended period of time (if it were not prevented
from doing it by competition) is often not desirable.
This competition originates from both real work and
often other constrained loops. Detect and report loops
that exist for extended periods of time

Practice: There are at least two types of Constrained
Loops with very different properties! There are
different ways to check for each type.

Kibitzing: Why doesn’t the Simple Loop checker find
them? Why not lower the mean and widen the spread?

Answer: There are infinite special cases that wreak
havoc on any attempt to find Constrained Loops with
large spans around a mean, and the number of false
positives will be substantial.

Exception Note: We use the exact same code to
check for exceptions and to notify for all loop types.

Finding Constrained Loops When Real Work Is
Present on the Node Along With Loops:

The initial idea was that on a node with significant real
work, constrained loops would all consume roughly the
same resources and have a negative correlation
coefficient [Ding, Thornley, Newman, CMG2001] when
compared to actual work and a highly positive one
when compared to each other. This puts you in the
unhappy position of trying to find an automatic way of
deciding whether each and every process is a loop or
a good one, before deciding if they are loops.

So, keep it simple, and just look for high positive
correlations. This turned out to be amazingly effective.
The computational load of computing correlation
coefficients for every process pair was daunting, so we
developed a simple crutch. There could be infinite
loops, each using a tiny bit of CPU, and we had ways
of detecting them at that point. So, as a first filter,
reject any process record that consumed less than
10% of a CPU during an hour. Then, compute
unbiased correlation coefficients on the remaining
small number of process pairs and list as “probable

Constrained Loop” any two processes that have a
correlation or 0.66 for enough hours out of 24 (we use
the Simple Loop value for that OS).

Incidentally, 0.66 is pretty conservative. Most
“Constrained Loops When Real Work Is Present on
the Node” pairs correlate at or above 0.9. With those
simple filters in place, we find almost all Constrained
Loops and suffer almost no false positives. Seems
easy, doesn’t it?

Finding Constrained Loops When Real Variable
Work Is Not Present on the Node Along With
Loops: It turns out that if you have more loops than
available processors on an otherwise dormant or static
machine, the correlations between process pairs is
essentially a chaotic number between –1 and 1.

We were finding all the Constrained Loops on nodes
where there was real processing demand, and those
were likely to be the ones we were most interested in.
Still, we want to find them all. Here’s an example that
shows our results.

Imagine an otherwise dormant two-processor machine
with five Constrained Loops on it. Each of the five
Constrained Loops was getting about 40% of a single
CPU over time. However, when closely examined, you
will see small variations as the loops wrestle control
from each other.

Figure 11, CPU Used By Five Constrained Loops
on a Two-Processor System

Since all of the means are so close, and the variances
are so small, the process of computing correlation
coefficients causes these small variations to take on
undue significance, and the result is that correlation
coefficients aren’t high and positive, they are all over
the place.

We can’t use those correlation coefficients to find
Constrained Loops on dormant systems!

But, we can take advantage of their close means. If
the process consumes more than 10% of a single CPU
during an hour, and its value lies within two standard
deviations (plus or minus) of the mean of another

0

10

20

30

40

50

Time

C
PU

C

on
su

m
pt

io
n

suspect, tag it as a probable. If two processes meet
this test for enough hours in a day (again, use the
number for that OS from the Simple Loop parameters),
then send mail to the capacity planners. So far, this
simple “clustering” detection method has worked
exceptionally well, but try it for a while to make sure
that there are no lurking unforeseen special cases.
We recommend that you try new detection
methodologies in a stealth mode too.

Loop Wrap Up: Hopefully this demonstrates that via
relatively simple formulas acting on minimal metrics,
you can find almost all of the CPU loops plaguing your
systems.

3.3 How We Detect The Ramp, at least so far…

There is one process present on most of our systems
that has a history of slow “Bumpy Ramp” behavior.
Left to its own devices and given enough time, it will
take over an entire machine. That process is the
model for the ramp in our example, but it is a lot
bumpier.

All formulaic
attempts that
we’ve tried so
far are mired
in complexity.
Depending on
the ratio
of “bumpy

ramp
behavior”,

slope, and number of periods easily available to
examine, different formulas work or fail. High slope
ramps are easy to find, subtle slope ramps are really
tough. How do you distinguish between a ramp’s slope
and another valid workload whose slope is
mathematically exactly the same during some
periods?

Ramps do have one “easy to see” quality. Eventually,
they grow past any threshold you want to set. You
must identify and set thresholds for key workloads or
processes. That said, automatically detecting a
problem on 50 nodes a day and sending daily alerts
can sure focus attention on a widespread problem.
Also, it is a trivial matter to decide on a maximum
value that a given workload should be allowed to
consume on a machine and alert when it exceeds it.

For example, if all Tools (monitors, collectors, anti-
virus, backup and restore activity, disk defraggers,
etc.) are in one group, it is easy to make a statement
like “The Tools workload should never take more than

10% of any box”. It is recommended that you run this
one FYEO or in stealth mode (ours still is), notifying
only select individuals. You may be amazed at how
much your Tools infrastructure is eating your total
infrastructure.

4 Summary – Join The Hunt!

You should now be convinced that automatically
finding process pathologies is relatively easy to try,
and has the potential to seriously improve the end
user’s experience and reduce your investigation
workload. While we’ve given examples of finding the
“usual suspects”, with both supremely accurate
mathematical precision and kludge methods, we are
convinced that many more pathologies are out there
waiting for some bright individual to discover their
simple detection algorithms.

A good ramp detector would be particularly useful for
detecting memory leaks and slow ramps that sneak up
on you. We are devoting serious energy to this one
and will happily cooperate in testing algorithms that
look promising.

If multiple people contribute working ideas, we are
willing to post the underlying code/algorithms to some
public place, for everyone’s use. This paper is a first
step in that process, and I eagerly expect further
research and discussion in this area. Please feel free
to contact the author regarding coauthoring new
process pathology detection papers, possibly helping
test your ideas against our mountain of process data,
or even just telling you about the disaster that we
created when we tried “that” idea. Let’s get started!

5 Appendix: Formulas! Pseudo-Code!

Perhaps picking the precise way we did it from the text
is not your favorite method. Try this:

Where:

dos = allowed deviation for that operating

system
loopthreshold = number of hours in your review

period required to qualify as a loop
(we use 8)

mos = loop mean for that operating system
mlow = mos – dos
mhigh = mos + dos

pcpu = CPU consumed by a unique process
pn

cpu = CPU consumed by a unique process n
phours = number of hours in your review period

that pcpu looped
pexception_hours = the additional hours needed for a

C
P

U
s

Figure 12, The Lurking Ramp

pcpu on the exception list to qualify
as a loop. Note that when loopthreshold +
pexception_hours >= total periods, this process will
never trigger a loop!

σpncpu= standard deviation of CPU consumed
by a unique process n during the hours
where both processes existed.

µn
cpu= computed mean of the CPU consumed

by a unique process n during the hours
where both processes existed.

Note: We usually examine 24 one-hour periods each
day.

Detecting Simple Loops:

If (pn

cpu >= 10% of a CPU on that machine)) {
 If ((the machine is not saturated) {
 For each pcpu {
 phours = 0
 For each hour {
 If ((pcpu >=mlow) and (pcpu <= mhigh))
 then phours = phours + 1
 }
 If (pcpu‘s process name is on that
 operating system’s exception list) {
 loopthreshold = loopthreshold + pexception_hours
 } else {
 loopthreshold = normal loopthreshold
 }
 if (phours >= loopthreshold) then it’s a loop!
 }
 }
}

Detecting Constrained Loops:

For All Constrained Loop Types:

If ((pn

cpu >= 10% of a CPU on that machine)
 and (the machine is saturated)) {

… pn

cpu is put on the review list for that hour.

With real variable work present
(Correlation Coefficient):

 COV (p1

cpu, p2
cpu)

C(p1
cpu, p2

cpu) = ---------------------
 σp1cpu σp2cpu

…which yields a number between –1 and 1.

If (C(p1
cpu, p2

cpu) is >= 0.66), it’s a constrained loop!

For a much better description of computing correlation
coefficients, see [Ding, Thornley, Newman,
CMG2001], which is what I used.

With no real variable work present
(Mean and spread):

If the previous formula didn’t find any, you either don’t
have constrained loops or the competing work is non-
existent or extremely consistent, like a hum or a
shriek. Try this:

If (p1

cpu >= (µ2
cpu - 2σp2cpu) and

 (p1
cpu <= (µ2

cpu + 2σp2cpu) {

…you probably have a suspect.

This is simply a test to see if your suspect process’s
mean consumption is within two standard deviations of
another suspect’s mean.

Detecting Ramps:

If (pcpu >= threshold) {
 …notify someone!
}

Errata:

If ((pn

cpu >= 10% of a CPU on that machine) is just a
simple culling technique to reduce computing
correlations for insignificant processes.

One really tricky bit is that you must remember that
you have to re-compute µ1

cpu, µ2
cpu, σp1cpu and

σp2cpu each time for each pair, including only the
hours where both members of the pair qualified as
loops. Suspect this when your computed correlation
coefficients exceed +-1.

Also, one hole in this method occurs during spans of
time when the number of loops keeps changing.
Imagine a node where a new constrained loop joins in
frequencies shorter than your aggregation interval (we
use an hour), and randomly someone kills some. This
will wreak havoc on your correlations. We do have
three issues in our favor here, 1) this is extremely rare,
2) a node adding loops this fast will saturate and you’ll
quickly notice it for other reasons, and 3) we don’t
have to be perfect, we just have to try!

I only said it looks simple, remember?

6 References

[Smith and Williams, 2001] C. U. Smith and L. G.
Williams, “Software Performance Antipatterns:
Common Performance Problems and Their Solutions”
CMG 2001 Proceedings, Vol 2, pp 797-806, Anaheim
CA, December 2001

[Smith and Williams, 2002] C. U. Smith and L. G.
Williams, “New Software Performance Antipatterns:
More Ways to Shoot Yourself in the Foot” CMG 2002
Proceedings, Vol 2, pp 667-674, Reno NV, December
2002

[Brewer] Denny Brewer, fellow capacity planner,
master of automation, whose sage wisdom, implacable
attention to detail and good-humored patience makes
all this work possible.

[Ding, Thornley, Newman, CMG2001] Yiping Ding,
Chris Thornley and Kenneth Newman, On Correlating
Performance Metrics, CMG 2001 Proceedings, Vol 1,
pp 467-477, Anaheim CA, December 2001

Yiping, Chris and Kevin’s papers are great resources
for formulas and precise and concise descriptions of
how to apply them.

A special thank-you to Denise Kalm, the best CMG
paper mentor and editor you could hope for. This
paper is 200% better due to her efforts.

7 Legalese

Any process names, product names, trademarks or
commercial products mentioned are the property of
their respective owners.

All opinions expressed are those of the author, not
Safeway Inc. Inc.

Any ideas from this paper implemented by the reader
are done at their own risk. The author and/or Safeway
Inc. assumes no liability or risk arising from activities
suggested in this paper.

Work safe, and have a good time!

	CMG 2003 Main Menu
	Table of Contents
	Author Index
	Subject Index
	Acrobat Help
	Search This Paper

