Hot to Apply Modeling and Optimization to Select the Appropriate Cloud Platform

Boris Zibitsker

BEZNext

bzibitsker @beznext. com

About Speaker

Boris Zibitsker

Optimizing Business and IT

Dr. Boris Zibitsker is a CEO of BEZNext. His focus is on the development of performance assurance, performance engineering, dynamic performance management and long-term capacity planning software tools for big data, data warehouse and cloud applications.

He is a member of SPEC Big Data Research Group. Boris consults with many Fortune 500 companies, and he manages Capstone projects for graduate students in MS in Analytics at University of Chicago. Boris a Honorable Doctor of BGUIR and during last 5 years he was a co-chairman of Big Data Advanced Analytics Conference.

Abstract

Organizations want to take advantage of the flexibility and scalability of Cloud platforms. By migrating to the Cloud, they hope to develop and implement new applications faster with lower cost. Amazon AWS, Microsoft Azure, Google, IBM, Oracle and others Cloud providers support different DBMS like Snowflake, Redshift, Teradata Vantage, and others. These platforms have different architecture, mechanism of allocation and management of resources, and sophistication of DBMS optimizers which affect performance, scalability and cost. As a result, the response time, CPU Service Time and the number of I/Os for the same query, accessing the similar table in the Cloud could be significantly different than On Prem.

In order to select the appropriate Cloud platform, we use a modeling and optimization. First, we perform a Workload Characterization for On Prem Data Warehouse. Each Data Warehouse workload represents a specific line of business and includes activity of many users generating concurrently simple and complex queries accessing data from different tables. Each workload has different demand for resources and different Response Time and Throughput Service Level Goals.

- In this paper we will review results of the workload characterization for On Prem Data Warehouse environment.
- Secondly, we must collect measurement data for standard TPC-DS benchmark tests performed in AWS Vantage, Redshift and Snowflake Cloud platform for different sizes of the data sets and different number of concurrent users.
- During third step we use the results of the workload characterization and measurement data collected during the benchmark to modify BEZNext On Prem Closed Queueing model to model individual Clouds.
- And finally, during the fourth step we use the Model to take into consideration differences in concurrency, priorities and resource allocation to different workloads. BEZNext Capacity Planning optimization algorithms incorporate Graduate search mechanism to find the AWS instance type and minimum number of instances which will be required to meet SLGs for each of the workloads. Publicly available information about the cost of the different AWS instances is used to predict the cost of supporting workloads in the Cloud month by month during next 12 months.

Outline

- Introduction to Cloud Selection and Performance Assurance
- Data Collection and Workload Characterization
- Predicting Minimum Cloud Configurations Required to meet SLGs
- Predicting Cost
- Performance Assurance of Data Warehouse Workloads in the Cloud
- Summary

Introduction

BEZNext Performance Assurance Software and Services

	Enterprise Wide														
		Data Warehouse Big Data Cloud													
P E II	<i>Build</i> Performance Engineering during Building New Applications and Infrastructure	 How to be sure that new applications will perform well? How to predict the impact of new application implementation on performance of existing workloads? How to develop proactive recommendations to application developers and operations during DevOps process? Does existing platform has enough capacity to support both new and existing applications? How to select appropriate On Prem or Cloud platform for new application? 													
	<i>Manage</i> Dynamic Performance Management and Workload Management Optimization for Production Environment	 How to determine most frequent and severe Anomalies and root causes? How to determine workloads seasonality and proactively modify Workload Management rules? How to determine applications availability and provide actional information to application developers and operations How to optimize workload management? 													
	<i>Grow</i> Strategic Capacity Planning	required to meet Service Level ObjeDoes existing platform has enough	e impact of the workload and volume of data growth and determine the most effective measures Service Level Objectives with lowest cost form has enough capacity to support both new and existing applications? propriate Cloud platform for Data Warehouse and Big Data applications?												

Criteria of Cloud Platform Selection

MULTIPLE CRITERIA

Performance

Scalability

Cost

Security

Elasticity

Deployment Flexibility

Ecosystem Integration

Database Management

Analytic and Database Functionality

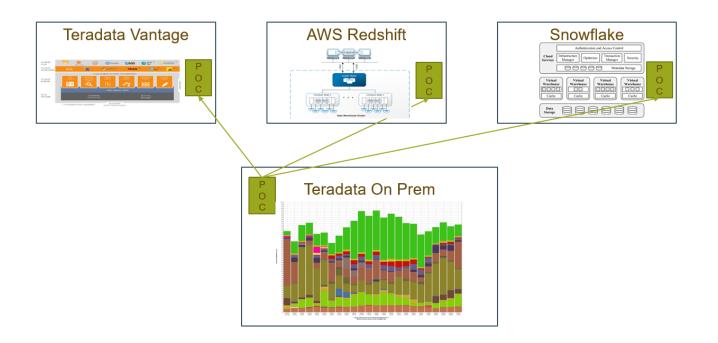
WE WILL FOCUS ON

Performance and

Cost

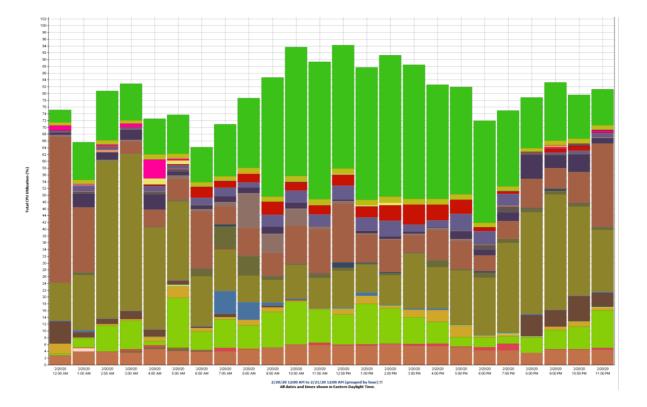
Major Steps

1. Data Collection and Workload Characterization 2. Modeling & Optimization


Predicting the Minimum Configuration Required

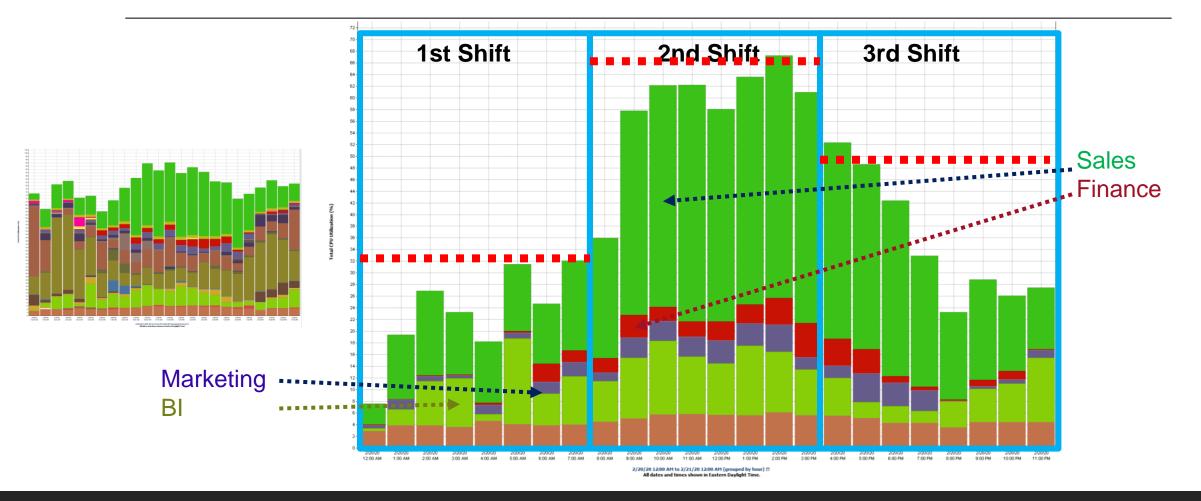
3. Predicting Cost

4. Cloud Platform Selection


Data Collection and Workload Characterization On Prem and in the Cloud

Data Collection On Prem and Cloud Platforms

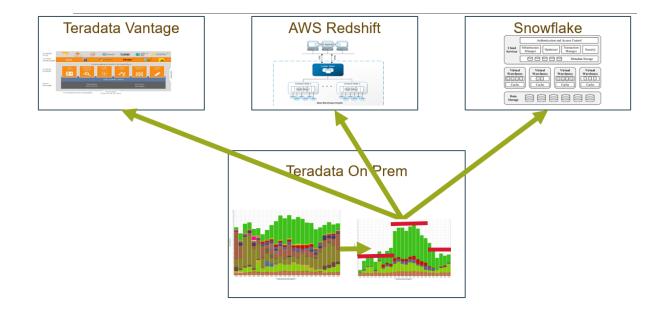
- Production workload On Prem
- POC Benchmark with representative Queries on each Platform
- Standard TPC DS Benchmark on each Platform


CPU Utilization by Production On Prem Workloads During 24 Hours

Hourly Profiles for Each Workload are built during Workload Characterization:

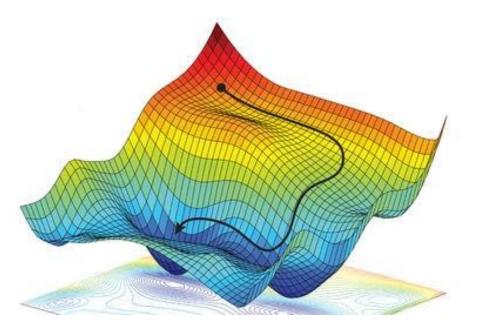
- Performance Profile
- Resource Consumption Profile
- Data Usage Profile

CPU Utilization by Workloads Selected for Cloud



Applying Modeling and Optimization to Determine the Minimum Configuration Required to meet SLG for each Workload

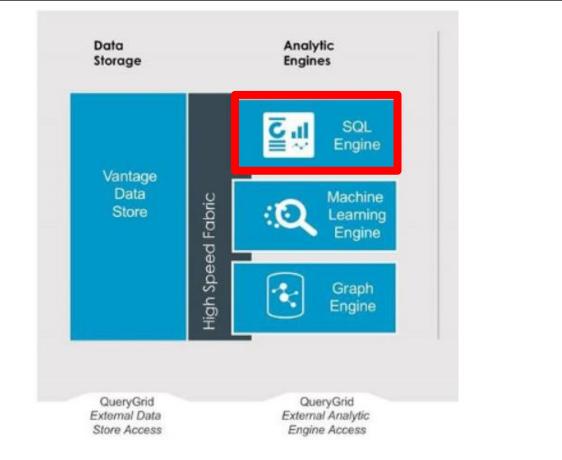
Modeling Approach


On Prem Queueing Network Model for MPP Data Warehouse reflects Hardware, Software configurations, Workload Management parameters and workload characterization results

Cloud Models are built by modifying parameters of On Prem models to reflect specific architecture of each Cloud DBMS platform and results of the benchmarks

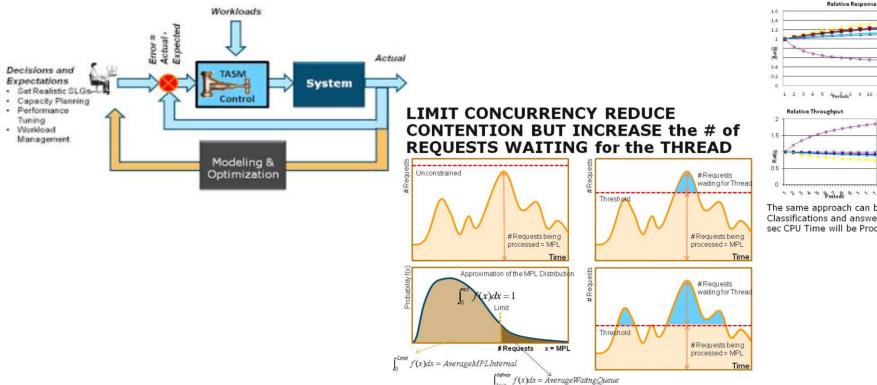
Determining the Minimum Cloud Configuration Capable Meeting SLGs

GRADIENT OPTIMIZATION

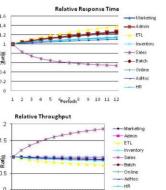


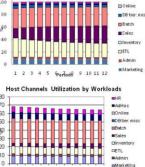
APPROACH

- 1. Apply Gradient Optimization to Workload Management
- 2. Use modeling to predict which workload will violate SLGs the most
- 3. Determine which resource will be the bottleneck
- 4. Apply Gradient method and iterative modeling to find the minimum hardware configuration required to meet SLGs for all workloads


Predicting performance of Data Warehouse workloads in Teradata Vantage environment

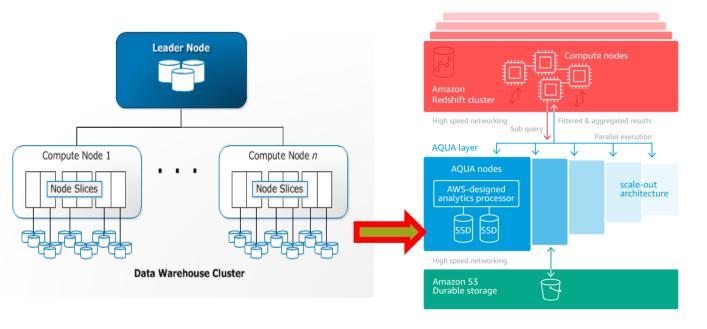
- AWS Instance selection
- Limited scalability, but sophisticated optimizer and workload management




Vantage Workload Management **Optimization**

OPTIMIZATION OF CAPACITY PLANNING, PERFORMANCE MANAGEMENT AND WORKLOAD MANAGEMENT

PREDICTED IMPACT OF INCREASING PRIORITY FOR SALES


CPU Utilization by Workloads

AdHoo

The same approach can be applied to predict the Impact of Changing Classifications and answer questions like: What if Users SQL required less than 1 sec CPU Time will be Processed with Higher Priority ...

Predicting performance of Data Warehouse workloads in AWS Redshift environment

- Limited number of nodes/instances in Redshift cluster
- Future release of Redshift will use AQUA to accelerate Redshift queries by running data intensive tasks such as filtering and aggregation, compression and others closer to the storage layer.
- We did not model the impact of AQUA on Redshift performance

Current Redshift Architecture

Advanced Query Accelerator (AQUA) for Amazon Redshift

Predicting performance of Data Warehouse workloads in Snowflake environment

- Snowflake automatically scales out and scale up
- First scenario running each workload in dedicated Virtual Warehouse
- Second scenario running all workloads in one Virtual Warehouse

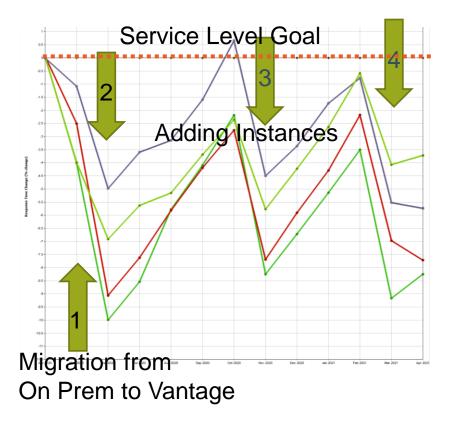
Cloud Services	Authentication and Access Control Infrastructure Manager Optimizer Transaction Manager	
	Metadata Storage	
Virtual Warehou		
Data Storage		7

Examples of Modeling and Optimization Predicting Min Configurations Required to meet SLGs for Each Cloud, 2nd shift during next 10 Month

MIGRATE 4 WORKLOADS TO THE CLOUD

EXPECTED GROWTH IN NUMBER OF USERS - 12% ANNUALLY

EXPECTED GROWTH IN VOLUME OF DATA PROCESSED - 10% ANNUALLY


Vantage 2nd Shift / Month

MIGRATE 4 WORKLOADS INTO ONE VIRTUAL WAREHOUSE:

Vantage: Recommended minimum configuration for 2nd shift during next 12 months

			Apr 2020	May 2020	Jun 2020	Jul 2020	Aug 2020	Sep 202(Oct 2020	Nev 2020	Dec 202(Jan 2021	Feb 2021	Mar 2021	Apr 2021
		😭 Workload Forecast	—												-0
	Image: Second control of the second														
		🗌 😰 022012 Actual SSD	\bigcirc		0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0							
Configuration	guration 1 0 0 Image: State of the sta	2	0	0	0	0	<mark>ว</mark> >	0	0	0					
Configuration		Advice Vantage 34 m4.16xl 24 SSD PCIe	0	0	0-		— >—	—	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0				
		Advice Vantage 36 m4.16xl 24 SSD PCIe	0	0	0	0	0	0	0	0-			-	(0
		Advice Vantage 38 m4.16xl 24 SSD PCIe	0	0	0	0	0	0	0	0	0	0	0	0=	-0
		Priority Optimized 12 Vantage Step 02	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0
		Priority Optimized 12 Vantage Step 03	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0
		Priority Optimized 12 Vantage Step 04	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0
		Priority Optimized 12 Vantage Step 05	0	0	0 0 2 0 0 0 0 3 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0								
Workload		Priority Optimized 12 Vantage Step 06	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0
		Priority Optimized 12 Vantage Step 07	0	0	0	0	0	0	\bigcirc	0	0	0	0 0 0 0	0	
wanagement		Priority Optimized 12 Vantage Step 08	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0
		Priority Optimized 12 Vantage Step 09	0	0	0	0	0	0	0	0	0	0	0	0	0
		Priority Optimized 12 Vantage Step 10	0	0	0	0	0	0	0	0	0	0	0	0	0
		🗌 📓 Priority Optimized 12 Vantage Step 11	0	0	0	0	0	0	0	0	0	0	\bigcirc	0	0
		🗌 🕍 Priority Optimized 12 Vantage Step 12	0	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	\bigcirc	0							
		Priority Optimized 12 Vantage Step 13	0	0	0	0	0	0	0	0	0	0	0	0	

As a result of changing configuration according recommendation and workload priorities, Vantage Response Time will meet SLGs During next 12 months

Optimized Workload Management Priorities

		Sales	Marketing	Finance	BI
Current Priority	Current	24.99	38.54	39.66	16.58
Optimized Priority	Month 1	17.45	29.09	18.25	50.76
Optimized Priority	Month 2	17.26	28.68	18.13	49.73
Optimized Priority	Month 3	13.83	22.92	14.59	39.52
Optimized Priority	Month 4	12.05	21.05	12.14	35.08
Optimized Priority	Month 5	10.84	18.52	11.47	31.38
Optimized Priority	Month 6	10.97	18.44	11.47	31.38
Optimized Priority	Month 7	10.98	19.57	11.36	31.36
Optimized Priority	Month 8	10.96	18.55	11.35	31.36
Optimized Priority	Month 9	11.07	18.7	11.52	31.38
Optimized Priority	Month 10	10.98	18.75	11.22	31.46
Optimized Priority	Month 11	11.02	18.76	11.35	31.07
Optimized Priority	Month 12	11.03	18.76	11.35	31.07

Redshift 2nd Shift

MIGRATE 4 WORKLOADS TO THE REDSHIFT:

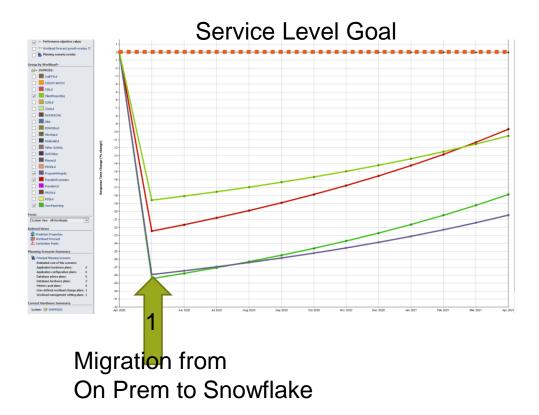
CLIENT REPORTING, USER REPORTING, PROGRAM INTEGRITY AND PROVIDER ECONOMICS

As a result of changing configuration according recommendation, Redshift Response Time will meet SLGs during next 12 months

		Apr 2021	May 202	Jun 2021	Jul 2021	Aug 2021	Sep 202	Oct 2021	Nov 2021	Dec 2021	Jan 202	Feb 202	Mar 202	Apr 202
	😭 Workload Forecast	• •	• —	• —		• =>=				•				-0
	📄 🖻 🌺 Principal Planning Scenario		2			_								
	022012 R2 Actual SSD	1 •	2	0	0	0	3	0	0	0	0	0	0	0
Configuration	RA3.16xlarge 130 24 SSD PCIe	0	—			0	J	0	0	0	4	0	0	0
9	RA3.16xlarge 140 24 SSD PCIe	0	0	0	0	<u> </u>			-	0		0	0	0
	RA3.16xlarge 150 24 SSD PCIe	0	0	0	0	0	0	0	0	<u> </u>	->			-
	Demand Change RA3 12	0	<u> </u>							->	->			-
	Priorities 12 Redshift ra3 step 02	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0
	Priorities 12 Redshift ra3 step 03	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0
	Priorities 12 Redshift ra3 step 04	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0
Workload	Priorities 12 Redshift ra3 step 05	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0
	Priorities 12 Redshift ra3 step 06	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0
Management	Priorities 12 Redshift ra3 step 07	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0
	🗌 🕍 Priorities 12 Redshift ra3 step 08	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0
	Priorities 12 Redshift ra3 step 09	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0
	Priorities 12 Redshift ra3 step 10	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	0
	🗌 🕍 Priorities 12 Redshift ra3 step 11	0	0	0	0	0	0	0	0	0	0	\bigcirc	0	0
	Priorities 12 Redshift ra3 step 12	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	0
	🗌 📓 Priorities 12 Redshift ra3 step 13	0	0	0	0	0	0	0	0	0	0	0	0	•

Predicted Redshift Relative Response Time Change

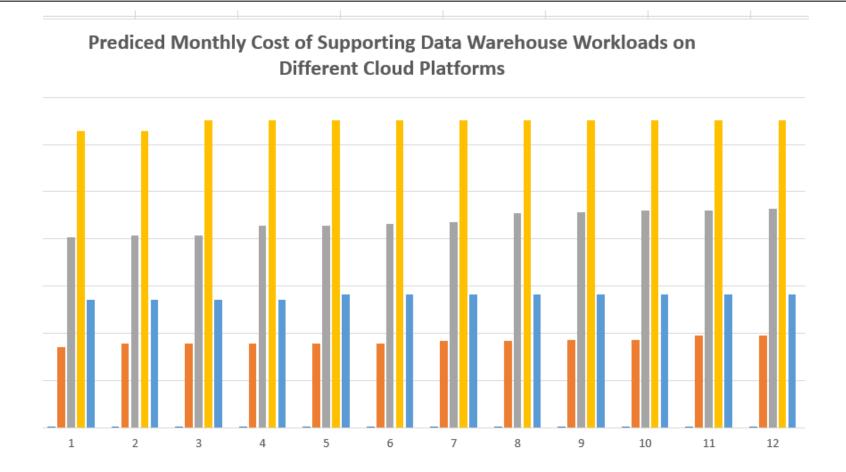
Snowflake 2nd Shift / Month


MIGRATE 4 WORKLOADS INTO ONE SNOWFLAKE VIRTUAL WAREHOUSE:

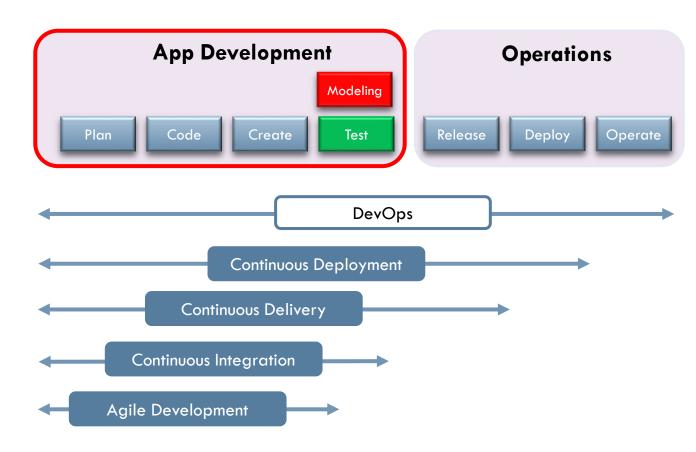
CLIENT REPORTING, USER REPORTING, PROGRAM INTEGRITY AND PROVIDER ECONOMICS

As a result of changing configuration according recommendation, Snowflake Response Time will meet SLGs during next 12 months

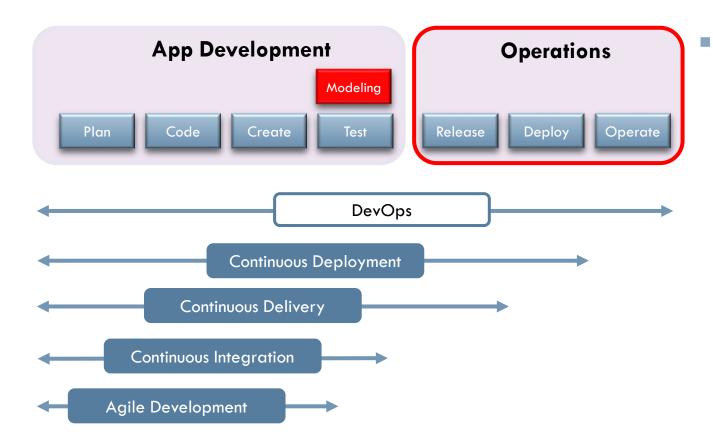
	Apr 2020	May 2020	Jun 2020	Jul 2020	Aug 2020	Sep 2020	Oct 2020	Nov 2020	Dec 2020	Jan 2021	Feb 2021	Mar 2021	Apr 2021
😭 Worldoad Forecast	-					—		—		—			-
🖻 🌺 Principal Planning Scenario													
🗌 😰 022012 Act SSD	\bigcirc		0	0	0	0	0	0	0	0	0	0	0
Snow 11x2XL PCI N	0	1	0	0	0	0	0	0	0	0	0	0	0
Snow 3x4XL PCI N	0	<u> </u>											
Demand Change Snow New 12	0	<u> </u>											
Equal Priorities 12	0	<u> </u>											


Predicted Relative Response Time Change

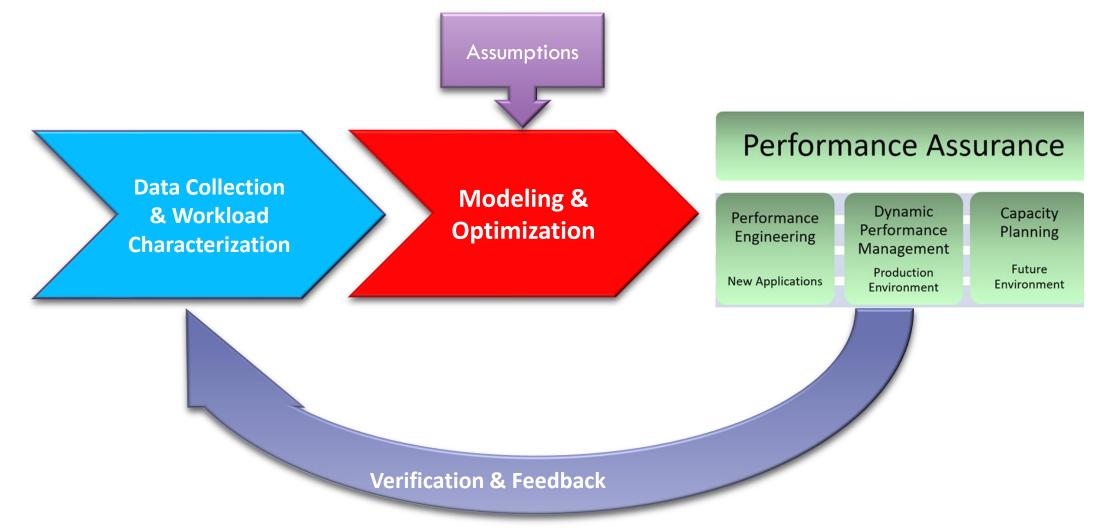
Predicted # of Instances and Instance Type required to meet SLGs for each Cloud / Shift / Month


Month		2	3	4	5	6	7	8	9	10	11	12
Vantage					5					10		
1st Shift												
1st Shift Min # Instances	10) 10	10	10	10	10	10	10	10	10	11	11
2nd Shift			10		10			10		10		
2nd Shift Min # Instances	32	2 34	34	34	34	34	36	36	36	36	38	38
3rd Shift												
3rd Shift Min # Instances	13	3 13	13	13	13	13	13	13	14	14	14	14
Redshift		2	3					8		10		12
1st Shift			-			-						
Min # ra3 Instances	52	2 52	52	54	54	54	56	56	58	58	58	60
2nd Shift												
Min # ra3 Instances	130	130	130	140	140	140	140	150	150	150	150	150
3rd Shift												
Min # ra3 Instances	72	2 74	74	76	76	78	78	80	80	82	82	82
Snowflake 4 workloads		2	3	4	5	6	7	8	9	10	11	12
1st Shift												
Instance Type	2XL	2XL	2XL	2XL	2XL	2XL	2XL	2XL	2XL	2XL	2XL	2XL
Min # Instances	5	5 5	6	6	6	6	6	6	6	6	6	6
2nd Shift												
Instance Type	4XL	4XL	4XL	4XL	4XL	4XL	4XL	4XL	4XL	4XL	4XL	4XL
Min # Instances	3	3 3	3	3	3	3	3	3	3	3	3	3
3rd Shift												
Instance Type	3XL	3XL	3XL	3XL	3XL	3XL	3XL	3XL	3XL	3XL	3XL	3XL
Min # Instances	ţ.	5 5	5	5	5	5	5	5	5	5	5	5
Snowflake 3 workloads	1	L 2	3	4	5	6	7	8	9	10	11	12
1st Shift												
Instance Type	XL	XL	XL	XL	XL	XL	XL	XL	XL	XL	XL	XL
Min # Instances	(5 6	6	6	7	7	7	7	7	7	7	7
2nd Shift												
Instance Type	2XL	2XL	2XL	2XL	2XL	2XL	2XL	2XL	2XL	2XL	2XL	2XL
Min # Instances	5	5 5	5	5	5	5	5	5	5	5	5	5
3rd Shift												
Instance Type	XL	XL	XL	XL	XL	XL	XL	XL	XL	XL	XL	XL
Min # Instances		7 7	7	7	7	7	7	7	7	7	7	7

Predicted Monthly Cost to Maintain SLGs on Different Cloud Platforms


Performance Engineering focusing on Devops

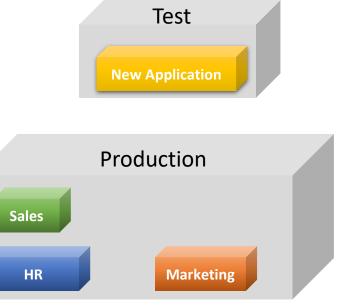
ROLE OF MODELING DURING APPLICATION DEVELOPMENT


- Predict new applications implementation impact
 - Predict how new application will perform in production environment
 - Identify Anomalies and their Root Causes during testing of new applications
 - Develop recommendations to Application Developers
- Predict how new application will affect existing production applications
 - Predict how implementation of new applications will affect Response Time and Throughput of existing applications
 - Develop capacity planning recommendations
 - Set up realistic expectations

ROLE OF MODELING FOR OPERATIONS

- Develop Proactive Performance Management and Workload Management Recommendations
 - Compare performance measurement results after implementation of the new application with expected
 - Develop proactive performance tuning recommendations
 - Develop proactive workload management recommendations
 - Reevaluate Capacity Planning recommendations

MODELING IS A BASE FOR PERFORMANCE ASSURANCE FOR DEVOPS

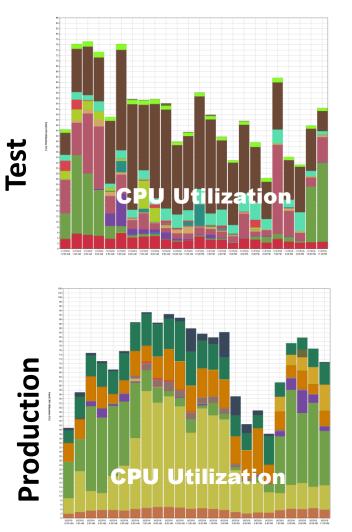

TEN STEPS OF APPLYING MODELING TO OPTIMIZE APPLICATION DEVELOPMENT AND OPERATIONAL DEVOPS DECISIONS

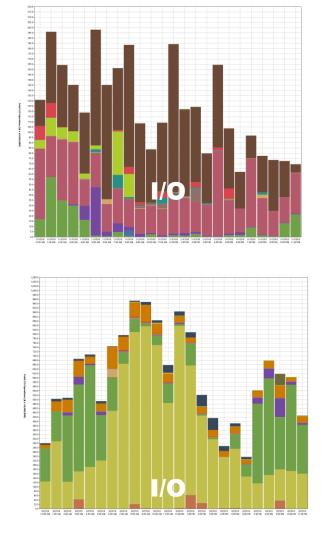
Workload Growth

FIRST STEP DATA COLLECTION DURING PERFORMANCE TESTING AND FOR PRODUCTION WORKLOADS

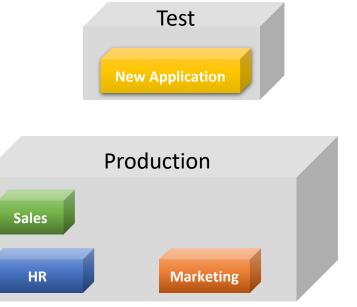
Data Collection during Performance Testing of New Application on Test System and for all workloads in Production Environments


Measurement Data Types

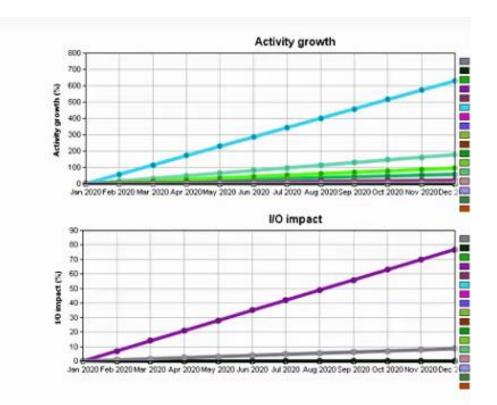

- Hardware and Software Configuration
- Response Time
- Throughput
- CPU Utilization and CPU Service Time per request
- Disk Utilization, I/O rate , #I/O operations per request and KB/Request, Channel Utilization
- Memory utilization
- Network utilization
- Level of concurrency


SECOND STEP WORKLOAD CHARACTERIZATION

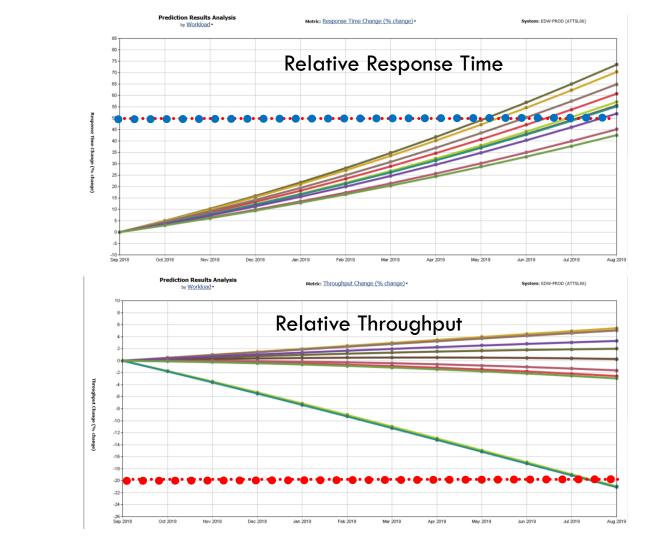
Test and Production Environments



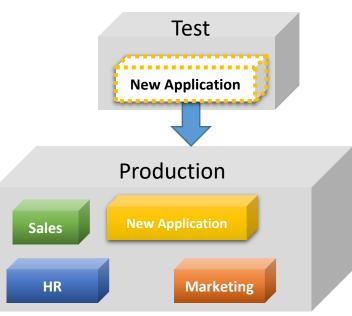
THIRD STEP ANOMALY AND ROOT CAUSE DETECTION

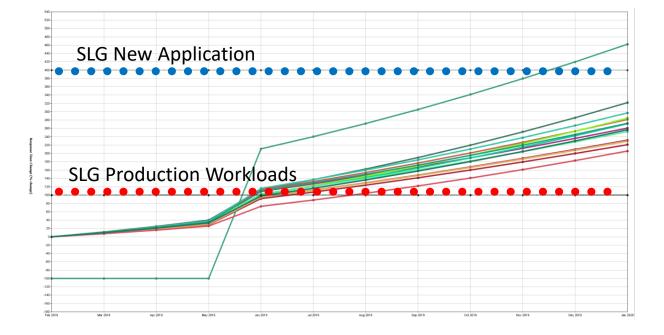

	Warm'				🖳 Admir
hboard Fi		Pulseat Car) punt (-	
m EDWP		Ruleset Centana-Function	Period Last 24 Hours	*	
	urce Usage Balance	Seasonal Peaks Analysis			
		3/2020 10:00 - 02/24/2020 1	0:00)		
# Anom	Second second	Severity Total 21.7	# Anomalies	Workloads Max Severity	
29	9	Maximum 1 Average: 0.7	Adhoc: 9 Application: 6	Other: 1 Application: 0.9	
		Average: 0.7	Other: 6	Adhoc: 0.9	
	N	lumber of Anomalies			Total Severity
	Respon	se Time [sec] 🗾 Throughput [Ren/Hourt		Response Time [sec]
		PU Time [sec]			CPU Time (sec) and total I/O (IO/Hour)
	Batch				Batch
Taction	Other cal-Reporting			Tarifical	Other Reporting
10,000	Adhoc			. Harun da	Adhoc
	Application				Application
	Reporting				Reporting
	0	1 2 3 4 5 1	5 7 8 9		0 1 2 3 4 5 6 7
					0 1 2 0 4 0 0 1
	R	esponse Time [sec] Anor	nalies		Throughput [Req/Hour] Anomalies
4 Reparting -	R	esponse Time [sec] Anor	nalies	ĝ one-	
4 Reporting Cither -	R	esponse Time [sec] Anor	nalies	etter oise -	
Other-	R	esponse Time [sec] Anor	nalies	Other- Mount people Seton-	
	R(11		amikh bisohio kina. Oper-	Throughput [Req/Hour] Anomalies
Cither- Batch-	- 0000 - 0001 - 0001 - 0001 - 0001 - 0001	11		- 002	Throughput [Req/Hour] Anomalies
Other-	- 0000 - 0001 - 0001 - 0001 - 0001 - 0001	2011 (2010)	nalies	Monthload Akima Bara-	Throughput [Req/Hour] Anomalies
Cither- Batch-	- 0000 - 0001 - 0001 - 0001 - 0001 - 0001		0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 002	Throughput [Req/Hour] Anomalies
Other- Batch- 00001000	- 0000 - 0001 - 0001 - 0001 - 0001 - 0001	2011 (2010)	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 40023.10.00	Throughput [Req/Hour] Anomalies
Cime - Batch- 0022100 00	- 0000 - 0001 - 0001 - 0001 - 0001 - 0001		0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 0023 10 00 Reparing -	Throughput [Req/Hour] Anomalies
Cime - Batch- 0022100 00	- 0000 - 0001 - 0001 - 0001 - 0001 - 0001		0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Name Vibration -bupadare -	Throughput [Req/Hour] Anomalies
Cime - Batch- 0022100 00	- 0000 - 0001 - 0001 - 0001 - 0001 - 0001		0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Name Vibration -bupadare -	Throughput [Req/Hour] Anomalies
Other- Batch- 00001000	- 0000 - 0001 - 0001 - 0001 - 0001 - 0001		0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 0023 10 00 Reparing -	Throughput [Req/Hour] Anomalies
Citrier - Baich- , 00010 8 Adhoc - Grapoting - Other -		00000000000000000000000000000000000000		Babino Montal Mo	Throughput [Req/Hour] Anomalies
Citrier - Baich- , 00010 8 Adhoc - Grapoting - Other -		00000000000000000000000000000000000000	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bapathy- Bapathy- Monorma Application- cher- Other-	Throughput [Req/Hour] Anomalies

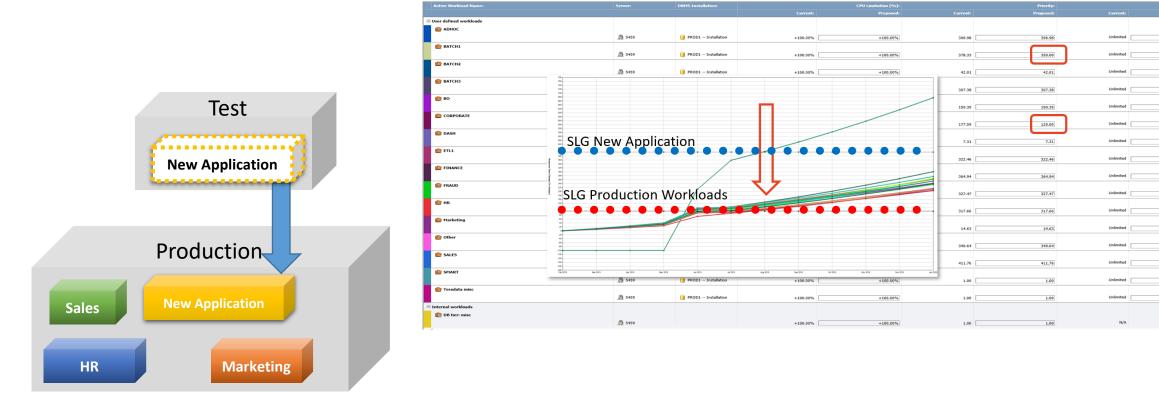
FOURTH STEP WORKLOAD FORECASTING FOR NEW AND PRODUCTION WORKLOADS


Test and Production Environment

Expected Workload and Volume of Data Growth


FIFTH STEP PREDICTING IMPACT OF EXPECTED WORKLOAD AND VOLUME OF DATA GROWTH IN PRODUCTION ENVIRONMENT





SIX STEP PREDICTING IMPACT OF NEW APPLICATION IMPLEMENTATION

SEVENTH STEP PREDICTING IMPACT OF THE WORKLOAD MANAGEMENT OPTIMIZATION WORKLOAD MANAGEMENT OPTIMIZATION WILL NOT BE SUFFICIENT TO MEET SLG

PERFORMANCE TESTING AND MODELING FOR NEW APPLICATIONS

-1.00

-1.00

-1.00

-1.00

-1.00

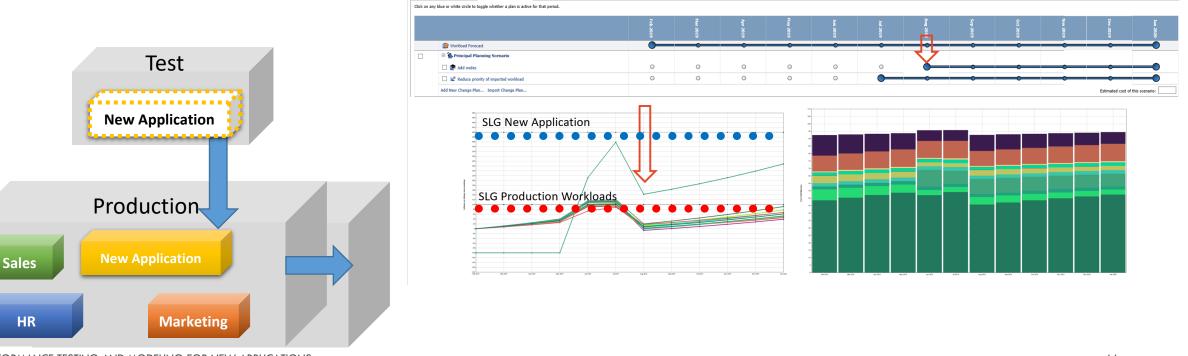
-1.00

-1.00

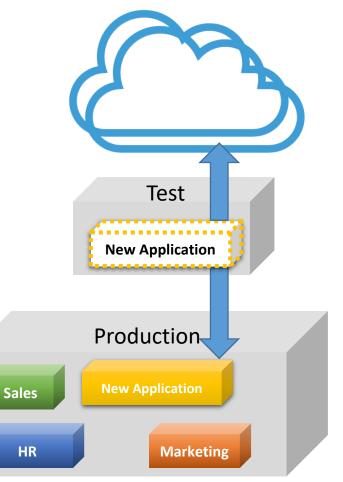
-1.00

-1.00

-1.00

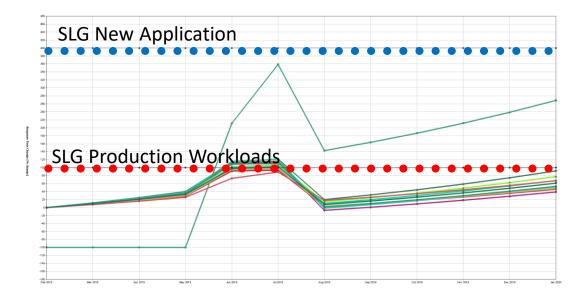

-1.00

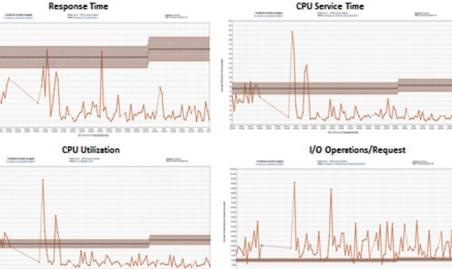
-1.00


N/A

EIGHTH STEP PREDICTING MINIMUM ON PREM UPGRADE REQUIRED TO MEET SLG AFTER NEW APPLICATION IMPLEMENTATION ADDITIONAL 14 NODES WILL BE REQUIRED TO MEET SLG

😭 General 🔮 Workloads 💊 Planning Scenarios 🎒 Results


NINTH STEP DETERMINING APPROPRIATE CLOUD PLATFORM FOR NEW APPLICATION



BEZNext Approach to Selection of the Appropriate Cloud

- Predict the minimum configuration required to meet SLGs
 - Instance type and # of instances which will be required Hour by Hour, Shift by Shift, Month by Month to meet SLGs for each of On Prem Production workload on each of the optional Cloud Platform
- Predict cost of running On Prem Data Warehouse Workloads on each of the optional Cloud Platforms
- Select Cloud platform capable to meet SLGs for all of the growing workloads with the lowest cost

TENTH STEP AUTOMATIC RESULT VERIFICATION AND CREATION OF CONTINUOUS PERFORMANCE ASSURANCE PROCESS

SA BENNENNANANANANANANA

HOW TO OPTIMIZING DATA WAREHOUSE AND BIG DATA APPLICATIONS PERFORMANCE ON PREM AND IN THE CLOUD

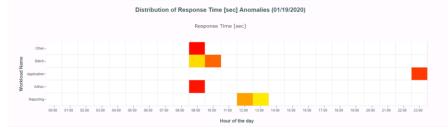
DYNAMIC PERFORMANCE MANAGEMENT FOR DATA WAREHOUSES, AND BIG DATA APPLICATIONS ON PREM AND IN THE CLOUD

- Set realistic Service Level Goals
 - Formal SLG are based on business requirements
 - Informal SLGs are based on analysis of historical data
 - Without SLG impossible to manage and plan effectively
- Data collection and Workload Aggregation
 - Automatic data collection across all platform and transforming to universal format reduce time required to coordinate and interpret data
 - U WAG by line of business allows to present results of analysis and recommendation clear to business people and IT management
- Workload Characterization
 - Automatic generation of Performance, Resource utilization and Data usage by Line of Business/Workloads enables automation of identification of problems and their root causes and use of modeling and optimization to generate proactive recommendations, including determining:
 - The most frequent performance anomalies/problems and their root causes
 - Pattern and balance of performance and resource utilization
 - Application availability
 - Seasonality for each workload
- Evaluate solutions for fixing the problems
- Verify results

DETERMINE MOST FREQUENT ANOMALIES AND ROOT CAUSES TO NARROW DOWN THE SCOPE OF PERFORMANCE TUNING

Data Warehouse

Workload ø	Parameter 6	# Anomalies 6		Dur	ation(Hou					Severity			Growth Ratio	
workidad ę	Parameter y	# Anomalies o	Sum :	Max	Avg	STD	95%	Sum 💡	Max 0	Avg	STD	95%	Anomalies	Total Severity
Tactical-Reporting	Response Time [sec]	200	200	1	1.00	1.00	1	148.37	1.27	0.74	0.98	0.95	-0.05	-0.01
Reporting	CPU Time [sec]	211	212	2	1.00	1.00	1	147.05	0.90	0.70	0.93	0.87	-0.11	-0.05
Batch	Throughput [Req/Hour]	162	165	2	1.02	1.01	1	130.89	2.20	0.81	0.93	1.06	-0.14	0.00
Adhoc	CPU Time [sec]	171	171	1	1.00	1.00	1	122.56	1.33	0.72	0.99	0.97	-0.05	-0.02
Other	CPU Time [sec]	179	179	1	1.00	1.00	1	118.97	0.95	0.66	0.96	0.89	-0.03	0.00
Application	Response Time [sec]	152	152	1	1.00	1.00	1	113.64	0.97	0.75	0.80	0.93	-0.08	-0.02
Batch	CPU Time [sec]	177	177	1	1.00	1.00	1	109.73	0.87	0.62	0.93	0.79	-0.08	-0.02
Adhoc	Total I/O [IO/Hour]	145	145	1	1.00	1.00	1	103.44	1.01	0.71	0.99	0.95	-0.09	-0.02
Application	CPU Time [sec]	144	144	1	1.00	1.00	1	96.82	0.91	0.67	0.91	0.83	-0.09	-0.02
Application	Total I/O [IO/Hour]	124	125	2	1.01	1.00	1	94.75	1.20	0.76	0.87	0.96	-0.10	-0.01

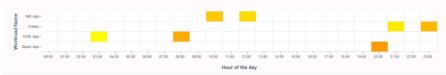

-Root Causes [12/01/2019-01/24/2020]-----

Show 10 * entri

Root Causes Summary

,

		Root Cause		# Anomalies Caused #	Total Severity of Anomalies	
Workload *	Parameter	User	Program	# Anomalies Caused #	Iotal Severity of Anomalies q	Workloads affected \$
Adhoc	I/O Rate [IO/Hour]	CN109706	SQLA:NET:SS:15.11.00.000	2	1.49	1
Adhoc	I/O Rate [IO/Hour]	JPARKIN	TOAD:NET:SS:16.20.03.000	17	11.43	1
Adhoc	Throughput [Req/Hour]	CN191466	SQLA NET SS 16 20 03 000	7	5.39	1
Adhoc	Throughput [Req/Hour]	JOCROSS	MSACCESS	12	8.60	1
Adhoc	Throughput [Reg/Hour]	CN138585	DTSDEBUGHOST	2	1.27	1
Adhoc.	Throughput [Reg/Hour]	TKNIGHT	TOAD NET SS 15 11 00 000	1	0.51	1
Adhoc	Avg CPU Time [sec]	CN138587	RSCRIPT	7	4.69	1
Adhoc.	I/O Rate [IO/Hour]	CN153996	SAS	1	0.55	1
Adhoc	Avg CPU Time [sec]	CN192133	JDBC15.10.00.14;1.8.0_192	3	2.44	1
Adhoc	I/O Rate [IO/Hour]	BHAN	DTSDEBUGHOST NET SS 15 11 00 0	1	0.97	1

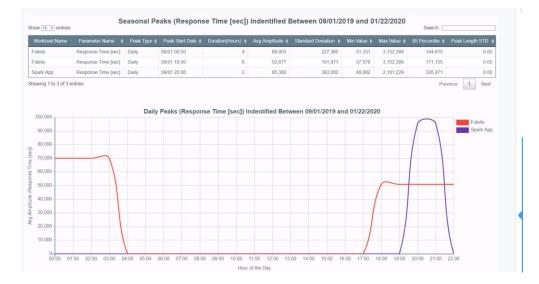

Big Data

Show 10 • en	iu ies	1.14												Search:			
Workload	a Parameter	e # Anomali	Duration(Hours)							Severity					Growth Ratio		
				Sum	Max	Avg	STD	95%	Sum 🕌	Max (Avg :	STD	95%	Anomalies	Total Severity		
Spark App	Response Time [sec]		4	5	2	1.25	1.08	2	3.57	0.97	0.89	0.99	0.97	1.00	0.01		
Spark App	CPU Time [sec]		4	4	1	1.00	1.00	1	3.51	0.96	0.88	0.89	0.96	0.00	0.01		
MR App	Response Time [sec]		-4	5	2	1.25	1.08	2	3.03	0.81	0.76	0.89	0.81	-1.00	-0.01		
Spark App	Throughput [Reg/Hour]		3	4	2	1.33	1.09	2	2.92	1.00	0.97	0.97	1.00	0.00	0.01		
MR App	Total I/O [IO/Hour]		2	2	1	1.00	1.00	1	1.90	0.97	0.95	0.98	0.97	0.00	-0.04		
Fidelis	CPU Time [sec]		2	2	1	1.00	1.00	1	1.83	0.93	0.92	0.96	0.93	0.00	-0.03		
MR App	CPU Time [sec]		2	2	1	1.00	1.00	1	1.75	0.89	0.87	0.94	0.89	0.00	-0.02		
Spark App	Total I/O [IO/Hour]		2	2	1	1.00	1.00	1	1.68	0.86	0.84	0.90	0.86	0.00	0.05		
HIVE App	Response Time (sec)		1	1	1	1.00	0.00	1	0.91	0.91	0.91	0.00	0.91	0.00	0.00		
Fidelis	Total I/O [IO/Hour]		- 1	1	1	1.00	0.00	1	0.80	0.80	0.80	0.00	0.80	0.00	0.00		
Root Causes	s [12/01/2019-01/24/2	020]				Root 0	Causes	Summa	ary					Search [
Show 10 • en	ntries													Search.			
Show 10 + en	ntries	Ro	ot Cau	150						Anomalies	Caused a	Total S	leverity of J		Norkloads affects		
ihow 10 + en	Parameter I	Ro User	ot Cau	50		Program				Anomalies	Caused a	Total S	leverity of <i>i</i>		Workloads affects		
				se :LAIM_SRV	C_DTL_FD	-	LOAD		1	Anomalies	Caused \$	Total S	Severity of J		Workloads affect		
Workload	Parameter	User	m_0	38765		S_TABLE_				Anomalies		Total S	leverity of <i>i</i>	Anomalies	Workloads affect		
Workload Spark App	Parameter Avg CPU Time [sec]	User sa_hdp_fidelis_p	m_0 m_0	LAIM_SRV		S_TABLE_			•	Anomalies	8	Total S	leverity of <i>i</i>	Anomalies	Workloads affecte		

Spark App	Throughput [Reg/Hour]	sa_hdp_fidelis_p	m_ALTERNATE_CARRIER_FDS_TABLE_LOAD	8	4.50	1
Spark App	Throughput [Reg/Hour]	sa_hdp_fidelis_p	m_DIM_EXTERNAL_PROVIDER_PT	5	4.39	1
Spark App	I/O Rate [IO/Hour]	infasvr	AUTH PROVIDER AFFILIATION FOR ATTENDING_AFFILIATION	4	3.78	1
Spark App	Throughput [Reg/Hour]	sa_hdp_fidelis_p	m_CLAIM_SUPPLEMENT_FDS_TABLE_LOAD	4	3.61	1
Spark App	I/O Rate [IO/Hour]	sa_hdp_fidelis_p	m_DIM_EXTERNAL_PROVIDER_AFF_PT	7	3.59	1
Spark App	I/O Rate [IO/Hour]	sa_hdp_fidelis_p	m_fid_member_plan_xwalk_load	4	2.62	.1
A403 Anna 1	UD Date BOILback	and some first of	INCOME ON DEPARTY TADI. In case when the to change of		4.00	1.1

Distribution of Response Time [sec] Anomalies (01/19/2020)

Response Time [sec]


DETERMINE SEASONAL RESOURCE UTILIZATION PEAKS

TO OPTIMIZE WORKLOAD MANAGEMENT AND RESOURCE ALLOCATION RULES ON PREM AND IN THE CLOUD (TASM, YARN, ALLOCATION AND DEALLOCATION RESOURCES IN THE CLOUD)

Data Warehouse

ANALYZE BIG DATA NODE UTILIZATION VARIABILITY RECOMMEND CHANGING OF DATA AND APPLICATIONS PLACEMENT TO IMPROVE RESOURCE UTILIZATION BALANCE

Difference in Big Data high and low nodes utilization Big Data Top 20 Nodes Utilization in Time

how 50 • entries		CPU	Util for Nodes W	ith Highest Utilization		Search:		\equiv \approx BEZ/Nox()
Date	Node Name		CPU User(%)	¢ CPU System(%)	CPU Idle(%)	CPU I/O Wait(%)	٠	Cluster Overview Node Details Node Availability Seasonal Peaks Analysis Seasonal Peaks Previous Runs Anomaly Detection Analysis Anomaly Detection Previous Runs Application Availability
12/27/2019 01:00	stihd11thp		34.45	31.97	2.49	65.47	0.08	- Filter
12/27/2019 01:00	stihd14thp		32.61	30.30	2.31	67.30	0.08	Cluster Name: 0 •
12/27/2019 01:00	stlhd18thp		32.56	30.42	2.14	67.35	0.09	Metrics group: CPU Utilization +
12/27/2019 01:00	stlhd09thp		31.67	29.16	2.51	67.72	0.61	Start Date: 0101/2220.00.00
12/27/2019 01:00	stlhd05thp		30.41	28.50	1.91	69.51	0.08	End Date: (01022220000)
12/27/2019 01:00	stlhd12thp		29.97	27.94	2.03	69.96	0.07	
12/27/2019 01:00	stlhd10thp		29.91	27.59	2.32	69.98	0.11	Run
12/27/2019 00:00	stihd18thp		28.15	26.15	2.00	71.79	0.07	
12/27/2019 01:00	stlhd06thp		27.71	25.52	2.19	72.19	0.11	Back
12/27/2019 01:00	stihd19thp		26.37	24.26	2.12	73.54	0.08	
12/27/2019 00:00	stihd12thp		26.25	24.23	2.02	73.68	0.07	Node Group #0
12/27/2019 01:00	stlhd32thp		26.21	24.73	1.48	73.77	0.02	Chart Type: 🛛 Line 🖓 Straight 🗎 Dashed 🗎
12/27/2019 01:00	stlhd13thp		25.94	24.02	1.93	73.98	0.07	40,
12/27/2019 01:00	stlhd17thp		25.45	22.97	2.48	74.43	0.12	stihd 19thp stil
12/27/2019 01:00	stlhd04thp		25.25	23.34	1.91	74.67	0.08	35-
12/27/2019 00:00	stlhd09thp		24.99	22.94	2.05	74.49	0.53	30
12/27/2019 00:00	stihd17thp		24.89	22.29	2.60	75.03	0.08	3 stihd32thp
12/27/2019 01:00	stihd16thp		23.90	21.88	2.02	76.02	0.08	25 g 25 sthd11hp sth
12/27/2019 01:00	stlhd29thp		23.76	21.90	1.86	76.22	0.02	20 sthd05hp
12/27/2019 00:00	stihd06thp		23.75	21.52	2.23	76.17	0.08	B tr
12/27/2019 00:00	stlhd13thp		23.43	21.12	2.31	76.49	0.08	S 15
12/27/2019 00:00	stlhd11thp		23.17	20.90	2.27	76.77	0.06	10 silhd10hp
12/27/2019 01:00	stlhd37thp		23.03	21.58	1.45	76.96	0.02	s sthat 200 m
12/27/2019 00:00	stlhd15thp		22.92	19.95	2.97	76.98	0.10	5 stihd04thp
12/27/2019 01:00	stlhd23thp		22.76	20.95	1.81	77.19	0.05	
12/27/2019 01:00	stlhd25thp		22.23	20.48	1.75	77.73	0.04	500 000 100 100 100 100 100 100 100 100
12/27/2019 00:00	stlhd29thp		21.89	20.12	1.77	78.09	0.03	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100
12/27/2019 00:00	stlhd05thp		21.62	19.28	2.35	78.32	0.06	਼ ਨਾ
12/27/2019 01:00	stlhd34thp		21.35	19.59	1.76	78.62	0.02	
12/27/2019 01:00	stihd15thp		21.27	19.47	1.80	78.65	0.08	Time

MEASURE APPLICATIONS AVAILABILITY

IDENTIFY APPLICATIONS WITH THE HIGHEST FREQUENCY OF FAILURES, WASTING RESOURCES -CANDIDATES FOR TUNING

Filter										
Cluster: BD01 v										
Start Date: 01/01/2020 00:00										
End Date: 01/07/2020 00:00										
Run										
-Results										
Show 10 • entries Application Availability Summary Search:										
Application Name	Number of Failures	CPU time of Failed Runs	Number of Success Runs	CPU time of Success Runs \$						
QueryResult.jar	5	2144	982	733589						
HIVE-027d3c1c-7b97-4ee0-98cf-fafd7b2edc8a	1	0	0	0						
HIVE-403c6d3c-fbac-448e-b044-f2b9b073468a	1	0	0	0						
AUTH PROVIDER AFFILIATION FOR ADMITTING_AFFILIATION	0	0	7	13375						
AUTH PROVIDER AFFILIATION FOR ATTENDING_AFFILIATION	0	0	7	12943						
AUTH PROVIDER AFFILIATION FOR FACILITY_AFFILIATION	0	0	6	12087						
AUTH PROVIDER AFFILIATION FOR PCP_AFFILIATION	0	0	6	12932						
AUTH PROVIDER AFFILIATION FOR REFERRING_AFFILIATION	0	0	6	11922						
CORE_DBO.PHONE.jar	0	0	6	158						
distcp	0	0	12	1562						
Showing 1 to 10 of 115,878 entries			Previous 1 2 3	4 5 11588 Next						

SUMMARY

- We reviewed how modeling and optimization technology in predicting the minimum configurations required for each Cloud to meet SLGs for growing workloads during next 12 months and how to predict the corresponding cost.
- This approach can be used for other Cloud platform
- We also reviewed role of Performance Engineering for new applications and Dynamic Performance management of production workloads in the Cloud

Thank you! Questions?

bzibitsker@beznext.com