

Global and Application Levels Exception Detection System,
 Based on MASF Technique

Igor Trubin, Ph.D.
 Capital One Services, Inc.

The paper describes one site's experience of using Multivariate Adaptive Statistical Filtering
(MASF) to produce web-based exception reports against SAS/ITSV performance databases for a
large, multi-platform environment. In addition to global exceptions, the system can capture
application level exceptions by using standard workload characterization. The history of
exceptions, kept in a separate database, is used to analyze seasonal stresses, considering it as a
natural test to discover the weakest subsystem.

1. Introduction

The Statistical Process Control concept became
popular for detecting statistically significant
exceptions of the computer system�s behavior. The
approach comes from the mechanical engineering
discipline [1] and was successfully adjusted to
computer systems by developing the Multivariate
Adaptive Statistical Filtering (MASF) technique [2].

The Exception Detection System (EDS) is used for
automatically scanning through large volumes of
performance data and identifying measurements of
global metrics that differ significantly from their
expected values. Extending on the MASF method,
this author suggested using some new derived
metric such as "amount of exceptions per day" and
keeping the history of exceptions in a separate
database to produce advanced capacity planning
analyses. This paper presents an interesting case of
interpreting the historical data.

In order to increase the accuracy of exception
detection, an application level was added to the
system and is described in this paper also.

2. Review of the existing tools (SAS and BMC)

The SAS system has the SAS/QC (Quality Control)
interactive tool, which is a good example of a
classical implementation of Statistical Process
Control concept, and can be applied on an ad-hoc
basis to detect statistical exceptions against SAS
data sets with the computer performance data.
However, there is no way to use any special filtering
policy to differentiate any subgroup such as
weekdays. Indeed, a Monday, for example, can
have a different pattern from other weekdays, and
only the MASF technique can take that into

consideration. But for some summary group such as
weekly or monthly averages, it might be not as
important, and this tool can detect the statistical
exceptions. Figure 1 shows an example of using
SAS/QC to find the weeks that had the statistically
unusual usage of a server's CPU.

Figure 1 - SAS/QC SPC chart example shows the
significant exceptions of a server's CPU usage

The Patrol Perform and Predict tool from BMC
software has several procedures for various types of
exception detection. It can capture the exceptions
using either constant thresholds or flexible ones
calculated based on the MASF procedure. This
implementation was discussed in the 2001 CMG
conference [4]. The system can automatically
generate and publish SPC charts and even keeps

some exceptions and MASF policies in the
database. BMC Patrol does not have a built-in
capability of setting up alarms by dynamic or
statistical exceptions. In addition, the database
keeps only simple non-statistical exceptions such as
constant thresholds and numbers of exceptions.
Figure 2 shows a typical MASF chart generated by
the Patrol Perform system.

Figure 2 - BMC MASF chart example shows the
significant exception of DISK I/O between 11:00 AM

and 12:00 PM

Both tools can only state and illustrate the fact of the
statistical exception occurrence. However, they
cannot estimate the magnitude of exceptions during
a particular interval (for the day, week, or month)
and cannot keep their history. The Exception
Detection System, which was developed by this
author, is also based on MASF and also can publish
SPC charts. It additionally has a mechanism to
produce exception estimation; generate the
statistical exception alerts; and keep the history of
statistical exceptions in the separate database.

3. Exception Detection System Structure

The Exception Detection System is the subsystem
that uses inputs from the SAS/ITSV Performance

Database (PDB). The structure is presented in
Figure 3 and consists of the following main parts:

� exception detectors for the most important

metrics such as CPU, memory and disk
utilization, memory page rate, and CPU run
queue;

� Exception Detection System database with
history of exceptions;

� statistical process control daily profile chart
generator;

� exception server name list generator;
� Leader/Outsider servers detector and detector of

runaway processes; and
� Leaders/Outsiders bar charts generator.

Within MASF, the exception detector (SAS program)
scans the six-month history of each server every day
for hourly performance data. The full "7 days X 24
hours� adaptive filtering policy is applied to calculate
the average, upper, and lower limits (three standard
deviations) of a particular metric for each weekday
for the past six months. See Figure 4, where
Monday is the example.

To generate a list of servers that experienced a
significant exception for the last day, the following
special rules are applied in addition to statistical
filters:

� Ignore a slight increase of workloads for

underutilized servers that used less than 20%
CPU, Memory, or Disk capacity.

� Ignore dates when the server had a runaway
process when calculating mean and standard
deviations. A runaway process might be, for
instance, a parasite infinite loop capturing free
resources and hiding the normal picture of
server utilization.

� Ignore insignificant isolated spikes (in most
cases it must be at least two hourly exceptions
to create an alarm).

� For metrics of percentage of utilization,
deviations that exceed 100% are converted to
the value 100%.

� Deviations that go below zero for all metrics are
converted to the value of 0.

Figure 3 � Exception Detection System Structure

The Exception Detection System outputs lists of
server names categorized by the type of exception.
These lists are compiled in Statistical Process
Control charts for each metric as shown in Figure 4
for CPU utilization.

When a Global Metric exception is detected, the
system starts a similar procedure of scanning
application level data to detect any particular
workloads that also had exceptions and were
responsible for the global exception.

Currently the system supports only three application
level metrics: CPU utilization, number of active

processes (which is related to global CPU queue),
and Disk IO. The output of the procedure is the list
of application names categorized by the type of
exceptions.

Both lists (global and application exceptions) are
automatically forwarded by email to individual
capacity planning analysts and performance
engineers.

The Leaders/Outsiders bar charts and runaway
process server lists are also emailed every day to
appropriate analysts and managers.

Multiplatform environment

CPU Util. CPU
Queue Disk Util. Memory

Page Rate
Memory

Util.

D
a t

a
Co

l-
le

ct
io

n

SPC daily profile charts
(see figures 4 and 5 as

examples)
Exception server
and Appl. name

lists

Global Exception Detectors (SAS program)

e-mail
notification Web publishing

Runaway process
and server/appl.

leaders detectors
(SAS program)

Leaders/
Outsiders bar

charts (see
figure 7 as
example)

History of
exceptions

(EDS
Database,

SAS dataset)

Performance Data Base
(SAS/ITSV)

for Unix,NT,Tandem, Unisys, and MVS servers

Exception?

No

Yes Appl. Exception Detectors (SAS program)

CPU Util. # of active
processes Disk IOs

Ad-hoc analyses

Figure 4 � Statistical process control chart

 and example of ExtraVolume metric

4. Notification and Web Publishing

The notification email text has three sections:

� Exception list of servers that had exceptions for

a particular metric. Each metric has its own list.
In front of each server name, there is a sublist of
application names that had exceptions as well
for immediate identification of the critical
workload.

� Null data list with servers that did not have any
performance data. This is an indication of a data
delivery problem.

� Insufficient data list. The server might be on this
list if the number of observations is less than a
certain quantity (empirical rule is "< 6"). In this
case, the system cannot make a statistically
adequate detection.

The lists may be sorted by platforms, business
areas, persons (planners, engineers, managers),
and so on.

In the current environment, there are more than
1000 servers, each server having up to 20
workloads. Responsibility for these servers is divided
among five planners. These planners receive daily
emails noting the exception from the previous day
(from 3 to 12 server names a day), which provides
them a good start for analyzing performance issues
and possible forthcoming capacity issues.

To get detailed information of the server's behavior
for the previous day, the system publishes an SPC
chart on the INTRANET Web site for each
exception, as shown in Figure 4. The Upper and

Lower Limits are calculated as 3 standard deviations
from average. A quick analysis of the chart allows
the analyst to identify immediately the part of the day
where the limits were exceeded.

The system does not automatically generate SPC
charts for application exceptions but can produce
them by request. An example of the chart is shown
in Figure 5.

The example shows that EDS captured a CPU
utilization exception at about 9:00 PM on server A,
and it found that the application "Workload B" had an
exception as well. By special request, the second
SPC chart was built to prove that fact. Based on this
chart, the reason of the exception can be recognized
easily. It was an unusual shift of the Workload B
execution.

Figure 5 � Global and application CPU utilization SPC charts.

5. Exception Database

The history of exceptions can be used for analysis to
show longer trends of metrics outside the third
standard deviation, which can indicate system
resource problems, server load growth (or
reduction), or seasonal deviation. The EDS
database was developed to store this data; it is
actually a log file in which the exception detector
records each occurrence.

The EDS database is a SAS dataset with the
following structure:

NAME - server name;
DAYMEAN - metric daily average;
FREQ - number of weekdays in the

server's data history (must be >6);
NUP - number of upper limit exceptions;
NLOW - number of lower limit exceptions;
DATE - exception appearance date;
PLATFORM - server configuration;
METRIC - performance metric name.

The two numeric fields NUP and NLOW are useful
when trying to determine the duration of unusual
stress on a server; servers that had the most
extreme exceptions for a certain period; and servers
that required more (or fewer) resources overall
during that day.

The example of the table in Figure 6 shows the
records sorted by METRIC. In addition to statistical
exceptions, it shows that some servers had
problems with the performance data collection. For
example, server20 did not have data at all (EDS
puts that name in "Null data" list), and server11 had
too few observations (EDS puts it in "insufficient
data" list).

To keep application level exceptions, the additional
table is used with similar structures. Instead of
PLATFORM, the table has the WORKLOAD field to
keep the name of the application that had an
exception. Both tables can be linked by NAME and
DATE to have a normalized relational structure.

NAME DAYMEAN FREQ NUP NLOW DATE PLATFORM METRIC S+ S- Extra
Volume

=
(S+)+(S-)

Unit to measure
ExtraVolume
data

server19 1.70 25 4 0 10/17 unix SUN CPUqueue 4.5 4.5 length

server2 3.64 12 0 20 10/17 unix HP CPUqueue 5.7 5.7 length

server3 17.46 24 5 0 10/17 unix HP CPUqueue 12.1 12.1 length

server11 342.77 15 3 0 10/17 unix HP DiskIO 2945 2945.0 # of I/O

server12 3650.58 15 9 0 10/17 unix IBM DiskIO 38455 38455.0 # of I/O

server20 . 8 12/1 unix IBM CPUutil 0.0 CPU sec

server13 0.73 25 2 0 11/21 unix IBM CPUutil 274 274.0 CPU sec

server2 0.32 24 4 0 11/21 unix HP CPUutil 5973 5973.0 CPU sec

server15 0.55 25 2 9 11/20 MVS CPUutil 34 3600.8 3634.8 CPU sec

server16 0.99 23 5 0 11/24 unix SUN MEMutil 239 239.0 Kb

server17 0.61 20 0 8 11/24 unisys MEMutil 998 998.0 Kb

server18 0.53 21 0 6 11/24 tandem MEMutil 490 490.0 Kb

server11 0.66 3 12/1 unix HP MEMutil 0.0 Kb

Figure 6 � EDS database example

6. "Extra Volume" Metric

If the Exception Detection System only kept
information about the number of times historical
trends were exceeded, then the exception trend
accuracy would be very low. For example, in the
SPC chart in Figure 4, server1 had

NUP = 2 (for 6:00 AM and 7:00 AM) and
NLOW = 1 (for 1:00 AM).

But if the real value of CPU utilization for 7:00 AM
was not 30%, but 90%, the record in the EDS
database would be the same although the exception
would be more significant.

To increase the accuracy of this approach, a derived
system performance metric should be added in the
EDS database. Rather than simply counting the
number of exceptions, it is necessary to calculate
the square between the limit curve and the actual
data curve (see Figure 4). In the case of exceeding
the upper historical limit, the area would be positive
(call it UpperVolume, or S+ in Figures 4 and 6); it
would be negative if the lower historical limit were
exceeded (call it LowerVolume, or S- in Figures 4
and 6). The best metric to record would be the sum
of those values:

ExtraVolume=UpperVolume+LowerVolume

This metric is an integrative characteristic of the
exceptions that happens for the day, and it has a
simple physical meaning that depends on the source
(parent) metric. For example, if the parent metric is
CPU utilization, ExtraVolume will be the daily CPU
time (ExtraTime in Figure 4) that the server has
taken more than a standard deviation. If the parent
metric is CPU run queue, ExtraVolume will be the
daily extra queue length versus the usual queue,
and so on.

As with LowerVolume and UpperVolume, the
ExtraVolume metric might be less or more than zero.

If the server showed a positive value for the last day,
it means more capacity was used on the server than
in the past. In the same way, if the server showed a
negative ExtraVolume metric, less capacity was
used than usual. Those metrics can be summarized
by day, week, or month, which will provide a
quantitative estimation of server behavior for a
certain period.

Based on this method, the system automatically
produces this calculation for the last day and records
that in the EDS database using S+ and S- fields as
shown in Figure 6. The database also has the
calculated ExtraVolume metric. This data is used for
generating Leaders/Outsiders charts for the last day,
last week, and last month, and for publishing the bar
charts as shown in Figure 7.

Figure 7 shows the top 10 servers that had the
maximum CPU time used beyond a standard
deviation for the last week (CPU utilization
ExtraVolume >0).

Figure 7 � Leaders bar charts

Similar charts can be generated to show the
opposite end of the server list and to demonstrate
the top 10 servers with CPU time below a standard
deviation (ExtraVolume<0).

The Application table in the EDS database also has
the ExtraVolume type data fields from which similar
charts can be generated. But it makes sense to do
only the top 5 exceptional workloads for each
particular exceptional server.

7. Ad-hoc analyses against EDS database

One example of an interesting analysis against the
EDS database was already discussed in the last
CMG conference. In the previous paper about EDS
[3], there was an example on how to compare the
statistical exceptions of the servers with different
"horsepower" configurations. CPU utilization
ExtraVolume was suggested for recalculating to
abstract transaction rate using a benchmark such as
TPM or SPEC.

Another analysis was done to estimate the impact
on a big SUN server during the Christmas holiday
shopping season. Figure 8 shows the result of this
analysis. The seasonal increase of the server usage
can be considered as a natural stress test. The EDS
database can help to take advantage of this "free of
charge" test. Usually during the stress test the
various subsystems, such as disk, memory, or CPU,

may react differently. If the system is well tuned for
supported business, all metrics should present
statistical exceptions almost synchronously.
Otherwise the metrics that are least frequently
presented in the exception database show which
subsystems are underutilized, and the frequently
listed metrics show the overutilized subsystems.

Such capacity imbalance can be seen in the
example in Figure 8. The server did not have CPU
utilization or run queue metrics exceptions at all.
This means that some metrics were within statistical
thresholds while others were not.

As shown in Figure 8, Disk and Memory metrics did
have positive exceptions during the stress period.
Just after the end of the holiday season, they had
negative exceptions. The last fact reflects the
process of getting back to normal resource usage.

Figure 8 � Exception history analysis

This analysis has the following conclusions:

A. The usage of the server's resources is not

balanced.
B. CPU subsystem has excess capacity.
C. Disk subsystem mostly experienced the impact.

It is a possible performance and/or capacity
bottleneck.

D. Memory page rate had a few exceptions, which
probably correlate to Disk I/O activity, and is not
a concern.

A similar analysis can be done against application
level exception data. A hidden and very interesting
(and potentially dangerous for servers) pattern of an
application's behavior can be discovered. But that is
the subject of another discussion

8. Summary

The Exception Detection System was developed as
a combination of the classical MASF technique and
some new ideas such as an EDS database to keep
a history of exceptions. The system uses some new
integrative metrics such as ExtraVolume to better
analyze and plan unusual server resource
consumption. In addition to global exceptions the
system can capture application level statistical
exceptions to determine which particular workload
caused the global one.

The Capacity Planning group at the author's
company has been using this system for about two
years. The system adequately supports the rapid
growth of the company, and it doesn't require buying
new analysis software (when using existing SAS
tools). The efficiency of this system has helped
reduce the reaction time to exceptions and the
amount of time needed to prepare exception reports.
In addition, the ad-hoc analyses against the
exception database have helped to discover the
system performance and capacity bottlenecks based
on the data of some seasonal workload deviations.

9. References

[1] Krajewski / Ritzman: �Operation

Management�, 1990, Addison-Wesley
Publishing Company, Inc.

[2] Jeffrey Buzen and Annie Shum: "MASF -

Multivariate Adaptive Statistical Filtering",
Proceedings of the Computer Measurement
Group, 1995, pp. 1-10.

[3] Kevin McLaughlin and Igor Trubin: "Exception

Detection System, Based on the Statistical
Process Control Concept", Proceedings of the
Computer Measurement Group, 2001

[4] Yefim Somin: "Hoarding or Herding: How

To Sleep Well on Your Performance Data
And Wake up Only for True Alarms ",
proceedings of the Computer Measurement
Group, 2001

	Back to the Table of Contents:

